scholarly journals Transgenic Mice Overexpressing the Divalent Metal Transporter 1 Exhibit Iron Accumulation and Enhanced Parkin Expression in the Brain

2017 ◽  
Vol 19 (2-3) ◽  
pp. 375-386 ◽  
Author(s):  
Cheng-Wu Zhang ◽  
Yee Kit Tai ◽  
Bing-Han Chai ◽  
Katherine C. M. Chew ◽  
Eng-Tat Ang ◽  
...  
2010 ◽  
Vol 432 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Darius J.R. Lane ◽  
Stephen R. Robinson ◽  
Hania Czerwinska ◽  
Glenda M. Bishop ◽  
Alfons Lawen

Astrocytes are central to iron and ascorbate homoeostasis within the brain. Although NTBI (non-transferrin-bound iron) may be a major form of iron imported by astrocytes in vivo, the mechanisms responsible remain unclear. The present study examines NTBI uptake by cultured astrocytes and the involvement of ascorbate and DMT1 (divalent metal transporter 1). We demonstrate that iron accumulation by ascorbate-deficient astrocytes is insensitive to both membrane-impermeant Fe(II) chelators and to the addition of the ferroxidase caeruloplasmin. However, when astrocytes are ascorbate-replete, as occurs in vivo, their rate of iron accumulation is doubled. The acquisition of this additional iron depends on effluxed ascorbate and can be blocked by the DMT1 inhibitor ferristatin/NSC306711. Furthermore, the calcein-accessible component of intracellular labile iron, which appears during iron uptake, appears to consist of only Fe(III) in ascorbate-deficient astrocytes, whereas that of ascorbate-replete astrocytes comprises both valencies. Our data suggest that an Fe(III)-uptake pathway predominates when astrocytes are ascorbate-deficient, but that in ascorbate-replete astrocytes, at least half of the accumulated iron is initially reduced by effluxed ascorbate and then imported by DMT1. These results suggest that ascorbate is intimately involved in iron accumulation by astrocytes, and is thus an important contributor to iron homoeostasis in the mammalian brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanmin Zhong ◽  
Xin Li ◽  
Xixun Du ◽  
Mingxia Bi ◽  
Fengtong Ma ◽  
...  

Abstract Abnormal iron accumulation caused by elevated levels of divalent metal transporter 1 (DMT1) contributes to progressive neurodegeneration in Parkinson's disease (PD). Parkin is a E3 ubiquitin ligase for the ubiquitination of DMT1. S-nitrosylated parkin (SNO-parkin) is commonly observed in PD. However, the effects of S-nitrosylation on the E3 ubiquitin ligase activity of parkin for the ubiquitination of DMT1 in PD are largely unknown. To elucidate the role of S-nitrosylated parkin and DMT1 in PD, SH-SY5Y cells were transfected with parkin, being treated with S-nitrosoglutathione (GSNO) and 1-methyl-4-phenylpyridinium (MPP+). The results showed increased levels of oxidized nitric oxide (NO) and S-nitrosylated parkin after the treatment of GSNO and MPP+ in parkin-transfected cells. Consistently, increased levels of DMT1, iron uptake and cell viability were observed. Interestingly, inhibition of S-nitrosylated parkin reduced the level of DMT1. Further, S-nitrosylation of parkin significantly inhibited the ubiquitination of DMT1. When HEK293T cells were transfected with plasmid of parkin with single site mutation (Cys241A, Cys260A, Cys323A), ubiquitination of DMT1 was also inhibited. However, the cells cotransfected with plasmids containing all three mutations, GSNO treatment did not affect the ubiquitination of DMT1. The expression of SNO-parkin and DMT1 protein in substantia nigra increased significantly gradually after 2 h, 4 h and 24 h with MPTP injection. These results indicate that the S-nitrosylation of parkin inhibits its E3 ubiquitin ligase activity for the ubiquitination of DMT1, which contributes to iron accumulation and degenerative process in PD. Targeted S-nitrosylation could provide a potential therapeutic strategy against PD.


2021 ◽  
Vol 22 (15) ◽  
pp. 8013
Author(s):  
Taewook Kang ◽  
Honggang Huang ◽  
Thomas Mandrup-Poulsen ◽  
Martin R. Larsen

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic β-cells, consequently cell death. Inhibition of β-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced β-cells during IL-1β exposure. Our findings reveal new phosphosites in the IL-1β-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1β exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving β-cell functions upon exposure to IL-1β. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in β-cells after DMT1 silencing.


2014 ◽  
Vol 229 ◽  
pp. S88
Author(s):  
Zeliha Kayaalti ◽  
Dilek Kaya Akyuzlu ◽  
Vugar Ali Türksoy ◽  
Esma Soylemez ◽  
Tulin Soylemezoglu

Sign in / Sign up

Export Citation Format

Share Document