scholarly journals Water use efficiency of net primary production in global terrestrial ecosystems

2015 ◽  
Vol 124 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Lei Xia ◽  
Fei Wang ◽  
Xingmin Mu ◽  
Kai Jin ◽  
Wenyi Sun ◽  
...  
2012 ◽  
Vol 9 (11) ◽  
pp. 4689-4705 ◽  
Author(s):  
H. Wang ◽  
I. C. Prentice ◽  
J. Ni

Abstract. An extensive data set on net primary production (NPP) in China's forests is analysed with the help of two simple theoretically derived models based on the light use efficiency (LUE) and water use efficiency (WUE) concepts, respectively. The two models describe the data equally well, but their implied responses to [CO2] and temperature differ substantially. These responses are illustrated by sensitivity tests in which [CO2] is kept constant or doubled, temperatures are kept constant or increased by 3.5 K, and precipitation is changed by ±10%. Precipitation changes elicit similar responses in both models. But NPP in South China, especially, is reduced by warming in the LUE model, whereas it is increased in the WUE model. The [CO2] response of the WUE model is much larger than that of the LUE model. It is argued that the two models provide upper and lower bounds for this response, with the LUE model more realistic for forests. The differences between the two models illustrate some potential causes of the large differences (even in sign) in the global NPP response of different global vegetation models to temperature and [CO2].


2021 ◽  
Vol 13 (21) ◽  
pp. 4257
Author(s):  
Xingming Hao ◽  
Jingjing Zhang ◽  
Xue Fan ◽  
Haichao Hao ◽  
Yuanhang Li

Soil moisture (SM) significantly affects the exchange of land surface energy and the stability of terrestrial ecosystems. Although some conclusions have been drawn about the effects of SM on the ecosystem water use efficiency (WUE), the influence mechanism and the quantitative assessment framework of SM on WUE are still unclear. This study provides an analysis framework for the feedback relationship between SM and WUE based on the dependence of the evaporation fraction on SM and output datasets from remote sensing and the Global Land Data Assimilation System. The results show that the range of WUE of terrestrial ecosystems of China was0.02–19.26 g C/kg H2O in the growing season with an average value of 1.05 g C/kg H2O. They also show a downward trend in43.99% of the total area. In the evapotranspiration (ET) pathway, SM negatively affected WUE, and the sensitivity coefficient ranged from −18.49 to −0.04. In the net primary production (NPP) pathway, the sensitivity coefficient ranged from −68.66 to 43.19. Under the dual effects of the ET and NPP pathways, the influence of SM on WUE was negative in 84.62% of the area. Variation in SM led to significant WUE variability. Generally, the percentage change in WUE (ΔWUE) ranged from 0% to 190.86%, with an average value of 28.02%. The maximum ΔWUE ranged from 0% to 758.78%, with an average value of 109.29%. The WUE of forest ecosystems showed strong resistance to SM variation, whereas that of non-forest vegetation was more sensitive to SM variation. This analytical framework provides a new perspective on the feedback relationship between WUE and SM in terrestrial ecosystems.


2012 ◽  
Vol 9 (4) ◽  
pp. 4285-4321 ◽  
Author(s):  
H. Wang ◽  
I. C. Prentice ◽  
J. Ni

Abstract. An extensive data set on net primary production (NPP) in China's forests is analysed with two semi-empirical models based on the light use efficiency (LUE) and water use efficiency (WUE) concepts, respectively. Results are shown to be broadly consistent with other data sets (grassland above-ground NPP; globally extrapolated gross primary production, GPP) and published analyses. But although both models describe the data about equally well, they predict notably different responses to [CO2] and temperature. These are illustrated by sensitivity tests in which [CO2] is kept constant or doubled, temperatures are kept constant or increased by 3.5 K, and precipitation is changed by ±10%. Precipitation changes elicit similar responses in both models. The [CO2] response of the WUE model is much larger but is probably an overestimate for dense vegetation as it assumes no increase in runoff; while the [CO2] response of the LUE model is probably too small for sparse vegetation as it assumes no increase in vegetation cover. In the LUE model warming reduces total NPP with the strongest effect in South China, where the growing season cannot be further extended. In the WUE model warming increases total NPP, again with the strongest effect in South China, where abundant water supply precludes stomatal closure. The qualitative differences between the two formulations illustrate potential causes of the large differences (even in sign) in the global NPP response of dynamic global vegetation models to [CO2] and climate change. As it is not clear which response is more realistic, the issue needs to be resolved by observation and experiment.


2012 ◽  
Vol 13 (2) ◽  
pp. 681-694 ◽  
Author(s):  
Akihiko Ito ◽  
Motoko Inatomi

Abstract Carbon and water cycles are intimately coupled in terrestrial ecosystems, and water-use efficiency (WUE; carbon gain at the expense of unit water loss) is one of the key parameters of ecohydrology and ecosystem management. In this study, the carbon cycle and water budget of terrestrial ecosystems were simulated using a process-based ecosystem model called Vegetation Integrative Simulator for Trace Gases (VISIT), and WUE was evaluated: WUEC, defined as gross primary production (GPP) divided by transpiration; and WUES, defined as net primary production (NPP) divided by actual evapotranspiration. Total annual WUEC and WUES of the terrestrial biosphere were estimated as 8.0 and 0.92 g C kg−1 H2O, respectively, for the period 1995–2004. Spatially, WUEC and WUES were only weakly correlated. WUES ranged from <0.2 g C kg−1 H2O in arid ecosystems to >1.5 g C kg−1 H2O in boreal and alpine ecosystems. The historical simulation implied that biospheric WUE increased from 1901 to 2005 (WUEC, +7%; WUES, +12%) mainly as a result of the augmentation of productivity in parallel with the atmospheric carbon dioxide increase. Country-based analyses indicated that total NPP is largely determined by water availability, and human appropriation of NPP is also related to water resources to a considerable extent. These results have implications for 1) responses of the carbon cycle to the anticipated global hydrological changes, 2) responses of the water budget to changes in the terrestrial carbon cycle, and 3) ecosystem management based on optimized resource use.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Xuguang Tang ◽  
Hengpeng Li ◽  
Ankur R. Desai ◽  
Zoltan Nagy ◽  
Juhua Luo ◽  
...  

2019 ◽  
Vol 39 (24) ◽  
Author(s):  
宫菲 GONG Fei ◽  
杜灵通 DU Lingtong ◽  
孟晨 MENG Chen ◽  
丹杨 DAN Yang ◽  
王乐 WANG Le ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 199 ◽  
Author(s):  
Jingxue Zhao ◽  
Tongren Xu ◽  
Jingfeng Xiao ◽  
Shaomin Liu ◽  
Kebiao Mao ◽  
...  

Water use efficiency (WUE) measures the tradeoff between carbon uptake and water consumption in terrestrial ecosystems. It remains unclear how the responses of WUE to drought vary with drought severity. We assessed the spatio-temporal variations of ecosystem WUE and its responses to drought for terrestrial ecosystems in Southwest China over the period 2000–2017. The annual WUE values varied with vegetation type in the region: Forests (3.25 gC kg−1H2O) > shrublands (2.00 gC kg−1H2O) > croplands (1.76 gC kg−1H2O) > grasslands (1.04 gC kg−1H2O). During the period 2000–2017, frequent droughts occurred in Southwest China, and overall, drought had an enhancement effect on WUE. However, the effects of drought on WUE varied with vegetation type and drought severity. Croplands were the most sensitive to drought, and slight water deficiency led to the decline of cropland WUE. Over grasslands, mild drought increased its WUE while moderate and severe drought reduced its WUE. For forests and shrublands, mild and moderate drought increased their WUE, and only severe drought reduce their WUE, indicating that these ecosystems had stronger resistance to drought. Assessing the patterns and trends of ecosystem WUE and its responses to drought are essential for understanding plant water use strategy and informing ecosystem water management.


Sign in / Sign up

Export Citation Format

Share Document