A new Western Disturbance Index for the Indian winter monsoon

2020 ◽  
Vol 129 (1) ◽  
Author(s):  
T M Midhuna ◽  
P Kumar ◽  
A P Dimri
2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Qin Li ◽  
Haibin Wu ◽  
Jun Cheng ◽  
Shuya Zhu ◽  
Chunxia Zhang ◽  
...  

Abstract The East Asian winter monsoon (EAWM) is one of the most dynamic components of the global climate system. Although poorly understood, knowledge of long-term spatial differences in EAWM variability during the glacial–interglacial cycles is important for understanding the dynamic processes of the EAWM. We reconstructed the spatiotemporal characteristics of the EAWM since the last glacial maximum (LGM) using a comparison of proxy records and long-term transient simulations. A loess grain-size record from northern China (a sensitive EAWM proxy) and the sea surface temperature gradient of an EAWM index in sediments of the southern South China Sea were compared. The data–model comparison indicates pronounced spatial differences in EAWM evolution, with a weakened EAWM since the LGM in northern China but a strengthened EAWM from the LGM to the early Holocene, followed by a weakening trend, in southern China. The model results suggest that variations in the EAWM in northern China were driven mainly by changes in atmospheric carbon dioxide (CO2) concentration and Northern Hemisphere ice sheets, whereas orbital insolation and ice sheets were important drivers in southern China. We propose that the relative importance of insolation, ice sheets, and atmospheric CO2 for EAWM evolution varied spatially within East Asia.


The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2019 ◽  
Vol 53 (11) ◽  
pp. 6559-6568
Author(s):  
Chunhan Jin ◽  
Bin Wang ◽  
Jian Liu ◽  
Liang Ning ◽  
Mi Yan

Sign in / Sign up

Export Citation Format

Share Document