Optimization of machining parameters during cryogenic turning of AISI D3 steel

Sadhana ◽  
2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Anurag Sharma ◽  
R C Singh ◽  
Ranganath M Singari
2021 ◽  
Vol 1874 (1) ◽  
pp. 012063
Author(s):  
Khair Khalil ◽  
A. Mohd ◽  
C. O. C. Mohamad ◽  
Y. Faizul ◽  
S Zainal Ariffin

2014 ◽  
Vol 97 ◽  
pp. 338-345 ◽  
Author(s):  
Varaprasad.Bh ◽  
Srinivasa Rao.Ch ◽  
P.V. Vinay

OALib ◽  
2014 ◽  
Vol 01 (06) ◽  
pp. 1-12
Author(s):  
Varaprasad Bhemuni ◽  
Srinivasa Rao Chelamalasetti ◽  
Siva Prasad Kondapalli

Author(s):  
S. Chakraborty ◽  
S. Mitra ◽  
D. Bose

The recent scenario of modern manufacturing is tremendously improved in the sense of precision machining and abstaining from environmental pollution and hazard issues. In the present work, Ti6Al4V is machined through wire EDM (WEDM) process with powder mixed dielectric and analyzed the influence of input parameters and inherent hazard issues. WEDM has different parameters such as peak current, pulse on time, pulse off time, gap voltage, wire speed, wire tension and so on, as well as dielectrics with powder mixed. These are playing an essential role in WEDM performances to improve the process efficiency by developing the surface texture, microhardness, and metal removal rate. Even though the parameter’s influencing, the study of environmental effect in the WEDM process is very essential during the machining process due to the high emission of toxic vapour by the high discharge energy. In the present study, three different dielectric fluids were used, including deionised water, kerosene, and surfactant added deionised water and analysed the data by taking one factor at a time (OFAT) approach. From this study, it is established that dielectric types and powder significantly improve performances with proper set of machining parameters and find out the risk factor associated with the PMWEDM process.


2012 ◽  
Vol 2 (6) ◽  
pp. 248-249
Author(s):  
Vishal Francis ◽  
◽  
Sumit k Singh Sumit k Singh

Author(s):  
Eder Silva Costa ◽  
Pedro Henrique Pires França ◽  
Leonardo Rosa Ribeiro da Silva ◽  
Wisley Sales ◽  
Álisson Rocha Machado ◽  
...  

2019 ◽  
Author(s):  
Rajesh Kanna S K ◽  
Sethuramalingam P ◽  
Abdul Munaf A ◽  
Lingaraj N ◽  
Sivashankar P

2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Sign in / Sign up

Export Citation Format

Share Document