Energy performance analysis of a dormitory building based on different orientations and seasonal variations of leaf area index

2016 ◽  
Vol 10 (4) ◽  
pp. 887-903 ◽  
Author(s):  
Sinchita Poddar ◽  
Dongyoon Park ◽  
Seongju Chang
Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Milad Mahmoodzadeh ◽  
Phalguni Mukhopadhyaya ◽  
Caterina Valeo

A comprehensive parametric analysis was conducted to evaluate the influence of the green roof design parameters on the thermal or energy performance of a secondary school building in four distinctively different climate zones in North America (i.e., Toronto, ON, Canada; Vancouver, BC, Canada; Las Vegas, NV, USA and Miami, FL, USA). Soil moisture content, soil thermal properties, leaf area index, plant height, leaf albedo, thermal insulation thickness and soil thickness were used as design variables. Optimal parameters of green roofs were found to be functionally related to meteorological conditions in each city. In terms of energy savings, the results showed that the light-weight substrate had better thermal performance for the uninsulated green roof. Additionally, the recommended soil thickness and leaf area index for all four cities were 15 cm and 5 respectively. The optimal plant height for the cooling dominated climates is 30 cm and for the heating dominated cities is 10 cm. The plant albedo had the least impact on the energy consumption while it was effective in mitigating the heat island effect. Finally, unlike the cooling load, which was largely influenced by the substrate and vegetation, the heating load was considerably affected by the thermal insulation instead of green roof design parameters.


2016 ◽  
Author(s):  
Wenjuan Zhu ◽  
Wenhua Xiang ◽  
Qiong Pan ◽  
Yelin Zeng ◽  
Shuai Ouyang ◽  
...  

Abstract. Leaf area index (LAI) is an important parameter related to carbon, water and energy exchange between canopy and atmosphere, and is widely applied in the process models to simulate production and hydrological cycle in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have not been fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (i.e. Pinus massoniana – Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber – Cyclobalanopsis glauca evergreen broadleaved forests) during period from April, 2014 to January, 2015. Spatial heterogeneity of LAI and its controlling factors were analysed by using geostatistics method the generalised additive models (GAMs), respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for three forests measured in January and for the L. glaber – C. glauca forest in April, July and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stand basal area, crown coverage, crown width, proportion of deciduous species on basal area basis and forest types affected the spatial variations in LAI values in January, while species richness, crown coverage, stem number and forest types affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.


2008 ◽  
Vol 112 (3) ◽  
pp. 810-824 ◽  
Author(s):  
M.C. González-Sanpedro ◽  
T. Le Toan ◽  
J. Moreno ◽  
L. Kergoat ◽  
E. Rubio

2021 ◽  
pp. 110960
Author(s):  
Eduardo Grala da Cunha ◽  
Celina Maria Brito Correa ◽  
Roberta Peil ◽  
Viviane Mülech Ritter ◽  
Daniela Hohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document