Seasonal variations in photosynthetic parameters and leaf area index in an urban park

2015 ◽  
Vol 14 (4) ◽  
pp. 1059-1067 ◽  
Author(s):  
Hyungsuk Kimm ◽  
Youngryel Ryu
2016 ◽  
Author(s):  
Wenjuan Zhu ◽  
Wenhua Xiang ◽  
Qiong Pan ◽  
Yelin Zeng ◽  
Shuai Ouyang ◽  
...  

Abstract. Leaf area index (LAI) is an important parameter related to carbon, water and energy exchange between canopy and atmosphere, and is widely applied in the process models to simulate production and hydrological cycle in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have not been fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (i.e. Pinus massoniana – Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber – Cyclobalanopsis glauca evergreen broadleaved forests) during period from April, 2014 to January, 2015. Spatial heterogeneity of LAI and its controlling factors were analysed by using geostatistics method the generalised additive models (GAMs), respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for three forests measured in January and for the L. glaber – C. glauca forest in April, July and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stand basal area, crown coverage, crown width, proportion of deciduous species on basal area basis and forest types affected the spatial variations in LAI values in January, while species richness, crown coverage, stem number and forest types affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.


2008 ◽  
Vol 112 (3) ◽  
pp. 810-824 ◽  
Author(s):  
M.C. González-Sanpedro ◽  
T. Le Toan ◽  
J. Moreno ◽  
L. Kergoat ◽  
E. Rubio

Author(s):  
Jonathan Willian Zangeski Novais ◽  
Danielle Da Silva Batista ◽  
Renata Luisa Ferreira ◽  
Roberta Daniela de Souza ◽  
Thiago Fernandes ◽  
...  

In the wake of climate change, cities need to adapt to global warming. In this context, the use of afforestation to improve the microclimate may assist in raising the quality of life for population. This objective requires research that analyzes how the variations in parameters related to canopy dynamics, such as the leaf area index (LAI) and photosynthetically active radiation (PAR) can influence thermal comfort indices. To contribute to this research, this study measured the air temperature, relative air humidity, PAR, and LAI on a monthly basis from July, 2017, to June, 2018, in an urban park in a tropical region of Brazil. Kriging maps were created for the heat index (HI), and multiple polynomial regression models were adjusted to estimate the HI using PAR and LAI data. After defining the models, positive and negative variations of LAI were tested to observe if any changes in HI occurred. The simulated results showed greater sensitivity to negative variations in LAI, in which a 50% reduction in LAI decreased the HI by 28%, particularly during the dry period.


Sign in / Sign up

Export Citation Format

Share Document