scholarly journals Thinking inside the box: new ways of considering energy consumption in a multi-user agency-constrained environment

2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Ksenia Chmutina ◽  
Andrew Dainty ◽  
Robert Schmidt ◽  
Elli Nikolaidou ◽  
Eirini Mantesi ◽  
...  

AbstractReductions in end-use energy imply some level of technological and behavioural change — yet there are marked differences in the balance between them. Moreover, the ways in which these influences can combine and mutually shape each other are complex, especially where multiple users interact within the same environment. A socio-technical perspective has gradually become more popular in building energy research in recent years, as it widens the focus beyond technology to include practices, infrastructure, markets, policies, social norms, and cultural meanings; however, there is very little knowledge on how this interplay works — particularly in a non-domestic environment. In this paper, we attempt to enhance the understanding of ‘social ordering of choices, problems and practice’ (Guy & Shove, 2000, p. 139) within a retail environment — and how these are competing when it comes to decisions about energy consumption. Using a longitudinal multi-methodological case study approach, this paper aims to explicate the socio-technical context within which energy consumption is considered by various actors in a large supermarket given that these actors have other behaviours (e.g. convenience, profit) as a priority and that the retail environment is agency constrained (i.e. shoppers, employees can hardly do anything individually to affect energy consumption). Using mixed-reality platform, we visualised socio-technical interactions, thus also visualising the decisions on where energy efficiency interventions could be made, what needs to be considered, and how this differs from different perspectives. Priorities that often remain ‘unspoken’ become visible — and thus provide a powerful foundation for the discussion about the consequences of an intervention there and then thus reduce the complexity of discussions and keeping crucial information available during the entire discussion process.

2020 ◽  
Vol 186 ◽  
pp. 01004
Author(s):  
Pathomthat Chiradeja ◽  
Atthapol Ngaopitakkul

Renewable energy especially solar energy has become a significant part in electrical power generation with its advantage in the environmentally friendly and current trend of decrease in installation cost. The photovoltaic (PV) system on a rooftop is one of the power generating system based on renewable energy that can fit building to utilize space efficiently. This paper is analyzing the feasibility of installing a solar PV rooftop on the building using a case study building located in Bangkok, Thailand. The performance will be evaluated in term of both energy and economic perspective. The comparison with Thailand building energy code also been done to show that overall energy consumption with PV system complies with the law. The result has shown that with rooftop photovoltaic system installation, annual energy consumption in the building can be reduced significantly and it can achieve feasibility in term of economic perspective.


2019 ◽  
Vol 158 ◽  
pp. 6551-6556
Author(s):  
Chao Ding ◽  
Wei Feng ◽  
Xiwang Li ◽  
Nan Zhou

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6950
Author(s):  
Chenfei Liu ◽  
Stephen Sharples ◽  
Haniyeh Mohammadpourkarbasi

Passivhaus EnerPHit is a rigorous retrofit energy standard for buildings, based on high thermal insulation and airtightness levels, which aims to significantly reduce building energy consumption during operation. However, extra retrofit materials are required to achieve this standard, which raises a contradiction between how to balance the environmental impacts of the retrofitting material inputs and extremely low energy consumption after retrofit. This motivated the analysis in this paper, which aimed to evaluate the possibilities of reducing the required retrofitting material inputs when trying to achieve the EnerPHit energy standard using a typical suburban dwelling in China’s hot summer–cold winter climate region as a case study. Firstly, how the insulation performance of each envelope component affected the building’s energy consumption was analysed. Based on this, sensitivity simulations of combinations of different insulation levels with different fabric components were investigated under four scenarios of insulation levels, airtightness and glazing choice. The final proposed retrofitting plans achieved the EnerPHit standard with insulation materials’ savings between 18% to 58% compared to a baseline retrofit plan, and this led, in turn, to 3.9 to 12.6 tonnes of carbon reductions. Moreover, an energy-saving of 87% in heating and 70% in cooling was achieved compared with the pre-retrofit dwelling.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190
Author(s):  
Irina Susorova ◽  
Brent Stephens ◽  
Benjamin Skelton

A common envelope performance problem in buildings is thermal bridging through balcony slab connections, which can be improved with the use of commercially available thermal break products. Several prior studies have used simulation-based and/or hot box test apparatus approaches to quantify the likely effect of balcony thermal breaks on effective thermal resistance of building enclosures. However, in-situ measurements of thermal performance in real buildings remain limited to date. This study uses a combination of field measurements and models to investigate the effects of installing balcony thermal breaks on the interior surface temperatures, effective thermal resistance, and annual building energy consumption. For the field experiment, yearlong measurements were conducted on the 13th floor of a 14-story multi-family building in Chicago, IL, in which thermocouple sensors were embedded into eight balconies and their adjacent interior floor slabs just before concrete was poured to complete the construction. The eight balconies included four control balconies without thermal breaks and four thermally-broken balconies with a commercially available thermal break product installed. The experimental data were then combined with 2-D heat transfer modeling and whole building energy simulations to investigate the impacts of the thermal break product installation on the envelope thermal resistance and overall energy use in the case study building as well as in several more generic building designs with simpler geometries. The results demonstrate that although the balcony thermal breaks helped regulate interior slab temperatures and improved the effective thermal resistance of the curtain wall enclosure assembly by an estimated ~14% in the case study building, the predicted effect on annual energy consumption in all modeled building types was small (i.e., less than 2%). The results also highlight the importance of paying careful attention to envelope design details when using thermal break products and considering the use of thermal break products in combination with other energy efficiency strategies to achieve high performance enclosures.


2013 ◽  
Vol 291-294 ◽  
pp. 1044-1049 ◽  
Author(s):  
Wen Long Jing ◽  
Mohamed Nayel

A building energy audit was developed through a case study on the science building at Xi'an Jiaotong-Liverpool University (XJTLU). The annual energy consumption of the building was surveyed over a two year period. The building energy consumption characteristics were displayed and the corresponding energy saving potential was analyzed. Additionally, an energy saving methods is proposed based on the characteristics of the target building.


Sign in / Sign up

Export Citation Format

Share Document