Multi-scale characteristics of remote sensing lineaments

2019 ◽  
Vol 13 (2) ◽  
pp. 287-297
Author(s):  
Junlong Xu ◽  
Xingping Wen ◽  
Haonan Zhang ◽  
Dayou Luo ◽  
Lianglong Xu ◽  
...  
2021 ◽  
Vol 10 (7) ◽  
pp. 488
Author(s):  
Peng Li ◽  
Dezheng Zhang ◽  
Aziguli Wulamu ◽  
Xin Liu ◽  
Peng Chen

A deep understanding of our visual world is more than an isolated perception on a series of objects, and the relationships between them also contain rich semantic information. Especially for those satellite remote sensing images, the span is so large that the various objects are always of different sizes and complex spatial compositions. Therefore, the recognition of semantic relations is conducive to strengthen the understanding of remote sensing scenes. In this paper, we propose a novel multi-scale semantic fusion network (MSFN). In this framework, dilated convolution is introduced into a graph convolutional network (GCN) based on an attentional mechanism to fuse and refine multi-scale semantic context, which is crucial to strengthen the cognitive ability of our model Besides, based on the mapping between visual features and semantic embeddings, we design a sparse relationship extraction module to remove meaningless connections among entities and improve the efficiency of scene graph generation. Meanwhile, to further promote the research of scene understanding in remote sensing field, this paper also proposes a remote sensing scene graph dataset (RSSGD). We carry out extensive experiments and the results show that our model significantly outperforms previous methods on scene graph generation. In addition, RSSGD effectively bridges the huge semantic gap between low-level perception and high-level cognition of remote sensing images.


2021 ◽  
Vol 13 (7) ◽  
pp. 1243
Author(s):  
Wenxin Yin ◽  
Wenhui Diao ◽  
Peijin Wang ◽  
Xin Gao ◽  
Ya Li ◽  
...  

The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing image interpretation. It is a challenging task, because as facility objects TPPs are composed of various distinctive and irregular components. In this paper, we propose a novel end-to-end detection framework for TPPs based on deep convolutional neural networks. Specifically, based on the RetinaNet one-stage detector, a context attention multi-scale feature extraction network is proposed to fuse global spatial attention to strengthen the ability in representing irregular objects. In addition, we design a part-based attention module to adapt to TPPs containing distinctive components. Experiments show that the proposed method outperforms the state-of-the-art methods and can achieve 68.15% mean average precision.


2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


Author(s):  
Joana Cardoso-Fernandes ◽  
Ana Claudia Teodoro ◽  
Alexandre Lima ◽  
Christian Mielke ◽  
Friederike Korting ◽  
...  

2021 ◽  
Vol 35 (1) ◽  
pp. 113-127
Author(s):  
Qiang Zhang ◽  
Jinhu Yang ◽  
Wei Wang ◽  
Pengli Ma ◽  
Guoyang Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document