Lipase and Phospholipase Combination for Biodiesel Production from Crude Soybean Oil

Author(s):  
Gleiciéli Steinke ◽  
Matheus Cavali ◽  
João H. C. Wancura ◽  
Jacir Dal Magro ◽  
Wagner L. Priamo ◽  
...  
2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


2009 ◽  
Vol 31 (3/4) ◽  
pp. 251 ◽  
Author(s):  
Kai Huang ◽  
Suping Zhang ◽  
Qingli Xu ◽  
Zhengwei Ren ◽  
Yongjie Yan

2016 ◽  
Vol 17 (10) ◽  
pp. 1608 ◽  
Author(s):  
Adriana Souza ◽  
Dayana Rodriguez ◽  
Daylin Ribeaux ◽  
Marcos Luna ◽  
Thayse Lima e Silva ◽  
...  

2016 ◽  
Vol 22 (4) ◽  
pp. 431-443
Author(s):  
Xiaochan Zhu ◽  
Hui Liu ◽  
Dejan Skala

In this study, mixed system containing manganese carbonate (MnCO3) and zinc glycerolate (ZnGly) was synthesized, and tested as solid catalyst for transesterification of soybean oil and biodiesel production. The samples of MnCO3/ZnGly before and after usage for transesterification process were characterized using different techniques: determination of basic strength, determination of specific surface area according to Brunauer-Emmett-Teller (BET), measuring the mass change using thermal gravimetric analysis (TGA), investigating the solid phase content and presence of different specific elements and groups by X-Ray diffraction (XRD), the Fourier transform infrared (FT-IR) spectroscopy, the scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The effects of different working parameters of transesterification were also investigated: temperature (438-458K), duration of transesterification (0-3.5h), methanol to oil molar ratio (12:1-36:1) and used amounts of catalyst (1-5 mass%). The reusability and stability of MnCO3/ZnGly were analyzed and obtained results showed that MnCO3/ZnGly exhibited a good activity with 100% TG conversion and 81.5% FAME yield with fresh catalyst, and can give 95-100% TG conversion and 62-78% FAME yield after 13 repeated use of same amount of catalyst without regeneration processes. Content of Mn and Zn in biodiesel and glycerol was analyzed by ICP-AAS after each reuse of catalyst.


2020 ◽  
Vol 11 (3) ◽  
pp. 2498-2508 ◽  
Author(s):  
Muxin Zhao ◽  
Yang Lan ◽  
Leqi Cui ◽  
Ewumbua Monono ◽  
Jiajia Rao ◽  
...  

The objective of this research was to fabricate crude soybean oil oleogels (CSO) using β-sitosterol (BS) and/or monoacylglycerol (MAG) and compare their role with that of refined soybean oil oleogels (RSO) in cookie making.


Sign in / Sign up

Export Citation Format

Share Document