Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages

2008 ◽  
Vol 87 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Akihito Fujimi ◽  
Takuya Matsunaga ◽  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Taiko Nagaya ◽  
...  
2017 ◽  
Vol 6 (8) ◽  
pp. 1698-1709 ◽  
Author(s):  
Yu Zhang ◽  
Chen Wang ◽  
Lan Wang ◽  
Bin Shen ◽  
Xin Guan ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2701-2701
Author(s):  
Akihito Fujimi ◽  
Takuya Matsunaga ◽  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Ikuta Tanaka ◽  
...  

Abstract New sources of red blood cells (RBC) would improve the transfusion capacity of blood centers. Several investigators have previously reported that erythroblasts could be obtained from hematopoietic stem cells including those of cord blood (CB) by in vitro culture. However, transfusion of erythroblasts may not be suitable for supplementation of acute blood loss because it should need some time lag until hemoglobin (RBC) boost in circulation due to the fact that transfused erythroblasts once lodged at bone marrow where they undergo maturation into RBCs which are bound to be released into circulation. We have developed a culture system for producing large quantity of enucleated RBCs (e-RBCs) as well as erythroblasts from CB in vitro: one unit e-RBCs (2 x 1012 RBCs) was obtained from one standard CB unit (corresponding to 2 x 106 CD34+ cells) using a coculture system with hTERT-transfected human stromal cells at early phase followed by with activated macrophage in liquid culture (American Society of Hematology 45th Annual Meeting, SanDiego, 2003). In the present study, we first analyzed the function of those manufactured e-RBCs in comparison of that of adult peripheral blood RBCs (PB-RBCs) or that of eryhthroblasts. The hemoglobin (Hb) content of the e-RBCs quantified by photometric determination was almost equivalent to that of adult PBRBC. A Hb A/Hb F ratio of e-RBC analyzed by high-performance liquid chromatography (HbA: HbF = 35: 65) was between those of CB RBCs (10: 90) and adult PB-RBC (99: 1). Oxygen dissociation curves of e-RBCs measured by Hemox-Analyzer was comparable to that of fresh adult PB-RBCs. The erythroblasts showed adhesive property to stromal cells in vitro but e-RBC did not. When we injected e-RBCs into NOD/SCID mice, they were detectable in circulation while erythroblasts were not. In conclusion, the e-RBCs produced by large-scale culturing system from CB CD34+ cells may be useful for acute blood loss.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180832 ◽  
Author(s):  
Zhenwang Jie ◽  
Yu Zhang ◽  
Chen Wang ◽  
Bin Shen ◽  
Xin Guan ◽  
...  

2017 ◽  
Author(s):  
Zhenwang Jie ◽  
Yu Zhang ◽  
Chen Wang ◽  
Bin Shen ◽  
Xin Guan ◽  
...  

Stem Cells ◽  
2006 ◽  
Vol 24 (12) ◽  
pp. 2877-2887 ◽  
Author(s):  
Takuya Matsunaga ◽  
Ikuta Tanaka ◽  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Maki Tanaka ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. S215
Author(s):  
Joseph Blake ◽  
Erin Massey ◽  
Carrie A Stoltzman ◽  
Jody Cook ◽  
Devikha Chandrasekaran ◽  
...  

Transfusion ◽  
2008 ◽  
Vol 48 (10) ◽  
pp. 2235-2245 ◽  
Author(s):  
Eun Jung Baek ◽  
Han-Soo Kim ◽  
Sinyoung Kim ◽  
Honglien Jin ◽  
Tae-Yeal Choi ◽  
...  

Author(s):  
Kamonnaree Chotinantakul ◽  
Chavaboon Dechsukhum ◽  
Duangnapa Dejjuy ◽  
Wilairat Leeanansaksiri

AbstractDiabetes can impair wound closure, which can give rise to major clinical problems. Most treatments for wound repair in diabetes remain ineffective. This study aimed to investigate the influence on wound closure of treatments using expanded human cord blood CD34+ cells (CB-CD34+ cells), freshly isolated CB-CD34+ cells and a cytokine cocktail. The test subjects were mice with streptozotocin-induced diabetes. Wounds treated with fresh CB-CD34+ cells showed more rapid repair than mice given the PBS control. Injection of expanded CB-CD34+ cells improved wound closure significantly, whereas the injection of the cytokine cocktail alone did not improve wound repair. The results also demonstrated a significant decrease in epithelial gaps and advanced re-epithelialization over the wound bed area after treatment with either expanded CB-CD34+ cells or freshly isolated cells compared with the control. In addition, treatments with both CB-CD34+ cells and the cytokine cocktail were shown to promote recruitment of CD31+-endothelial cells in the wounds. Both the CB-CD34+ cell population and the cytokine treatments also enhanced the recruitment of CD68-positive cells in the early stages (day 3) of treatment compared with PBS control, although the degree of this enhancement was found to decline in the later stages (day 9). These results demonstrated that expanded CB-CD34+ cells or freshly isolated CB-CD34+ cells could accelerate wound repair by increasing the recruitment of macrophages and capillaries and the reepithelialization over the wound bed area. Our data suggest an effective role in wound closure for both ex vivo expanded CB-CD34+ cells and freshly isolated cells, and these may serve as therapeutic options for wound treatment for diabetic patients. Wound closure acceleration by expanded CB-CD34+ cells also breaks the insufficient quantity obstacle of stem cells per unit of cord blood and other stem cell sources, which indicates a broader potential for autologous transplantation.


2002 ◽  
Vol 20 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Thi My Anh Neildez-Nguyen ◽  
Henri Wajcman ◽  
Michael C. Marden ◽  
Morad Bensidhoum ◽  
Vincent Moncollin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document