New method for predicting the ultimate bearing capacity of driven piles by using Flap number

2014 ◽  
Vol 19 (3) ◽  
pp. 611-620 ◽  
Author(s):  
Fatehnia Milad ◽  
Tawfiq Kamal ◽  
Hataf Nader ◽  
Ozguven Eren Erman
2014 ◽  
Vol 638-640 ◽  
pp. 365-369
Author(s):  
Shu Jun Zhang ◽  
Zhi Jun Xu ◽  
Kai Wang ◽  
Bo Zhang

This paper aims to study the distribution characteristics of the ratio of measured value and calculated value for ultimate bearing capacity, shaft resistance and tip resistance, and discuss the impact of shaft resistance and tip resistance on ultimate bearing capacity. A new performance function is proposed in terms of the three types of bearing capacity mentioned ahead. Take bored piles and driven piles for example, and the results from analysis indicate that the ratio of the measured value to calculated value of bored piles ranges from 0.75 to 1.45, and mostly is greater than 1.0; The ratio of the measured to predicted bearing capacity of driven piles lies between 0.8 and 1.5, and is larger than the corresponding ratio of bored piles. In addition, the reliability of tip resistance is lager than that of shaft resistance for bored pile, while the reliability of tip resistance is less than that of shaft resistance for driven piles. Meanwhile, the method presented in this paper can offer references to designers for revising and improving the technical code for pile foundations.


2015 ◽  
Vol 773-774 ◽  
pp. 1453-1459
Author(s):  
Wong Kok Leong ◽  
Nor Azizi Yusoff ◽  
Ameer Nazrin Abd Aziz ◽  
Zaihasra Abu Talib

In general, increasing of penetration rate may result in an increased of pile capacity. Occasionally, there were differences between theoretical and actual bearing capacity of the piles. Rate of penetration of pile influenced the pile bearing capacity. The bearing capacity of model pile increased as the rate of loading increased based on pile driving formula. Therefore, the study was conducted to determine the bearing capacity of model piles with different penetration forces based on theoretical method and experimented analysis. Five circular hollow section model piles using pipe pile were used to penetrate into cohesionless soil with different penetration force respectively. The loading for ultimate bearing capacity using theoretical calculation was approximately about 0.163kN.However, referring to the limitation of a laboratory setup, the maximum loading was 0.12kN. Several trials had been initiated but when it reached 0.14kN, the setup was unstable and dangerous to be continued. Therefore, the ultimate bearing capacity derived by the pile load test results were based on a pile moved up to 10% of its tip diameter criteria. In the future, both theoretical and actual calculation must be made to avoid any confusion and detect mistakes in near future.


2012 ◽  
Vol 479-481 ◽  
pp. 1709-1713
Author(s):  
Kai An Yu ◽  
Tao Yang ◽  
Chang Zhi Gong

In view of the problems of large stress and severe bearing heating in double-drum winch at present, this paper adopted a new method to enhance bearing capacity for double-drum winch by adding anti-pressure wheels between two drums. Finite element methods were used to analyze the strength of 4000kN-traction double-drum winches with anti-pressure wheels and without anti-pressure wheels respectively. The results of the analysis revealed that the stress of the cylinder bearing decreased from 264MPa to 167MPa. The new method by adding anti-pressure wheels had remarkably improved the endurance of the bearing. Therefore, the design method can be widely used in large-traction double-drum winch.


Author(s):  
Lianheng Zhao ◽  
Shan Huang ◽  
Zhonglin Zeng ◽  
Rui Zhang ◽  
Gaopeng Tang ◽  
...  

2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


Sign in / Sign up

Export Citation Format

Share Document