Evaluation of load and resistance factors for the reliability-based design of the main cables of earth-anchored suspension bridges

2015 ◽  
Vol 20 (6) ◽  
pp. 2457-2468 ◽  
Author(s):  
Seung Han Lee ◽  
HoHyun Lee ◽  
Inyeol Paik ◽  
Hae Sung Lee
2011 ◽  
Vol 48 (2) ◽  
pp. 265-279 ◽  
Author(s):  
Gordon A. Fenton ◽  
D. V. Griffiths ◽  
Olaide O. Ojomo

The reliability-based design of shallow foundations is generally implemented via a load and resistance factor design methodology embedded in a limit state design framework. For any particular limit state, the design proceeds by ensuring that the factored resistance equals or exceeds the factored load effects. Load and resistance factors are determined to ensure that the resulting design is sufficiently safe. Load factors are typically prescribed in structural codes and take into account load uncertainty. Factors applied to resistance depend on both uncertainty in the resistance (accounted for by a resistance factor) and desired target reliability (accounted for by a newly introduced consequence factor). This paper concentrates on how the consequence factor can be defined and specified to adjust the target reliability of a shallow foundation designed to resist bearing capacity failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Tian ◽  
Jiji Wang ◽  
Sugong Cao ◽  
Yuanli Chen ◽  
Luwei Li

This paper presents a reliability analysis to assess the safety of corroded main cables of a long-span suspension bridge. A multiscale probability model was established for the resistance of the main cables considering the length effect and the Daniels effect. Corrosion effects were considered in the wire scale by relating the test results from accelerated corrosion tests to the corrosion stages and in the cable scale by adopting a corrosion stage distribution of the main cable section in NCHRP Report 534. The load effects of temperature, wind load, and traffic load were obtained by solving a finite element model with inputs from in-service monitoring data. The so-obtained reliability index of the main cables reduces significantly after operation for over 50 years and falls below the design target value due to corrosion effects on the mechanical properties of the steel wire. Multiple measures should be taken to delay the corrosion effects and ensure the safety of the main cables in the design service life.


Author(s):  
Sajith Kumar ◽  
Daniel Smith ◽  
Hooman Jafari

Out of straightness upheaval buckling (OOS UHB) assessment considers the pipeline design and operational parameters, post-lay survey data and the properties of back-fill and rock in order to determine load and resistance factors that are applied. The factors allow for the natural variation of all parameters and are ultimately used to determine the download requirements along the route of a pipeline that is susceptible to UHB. Two methods are most commonly used in OOS UHB assessments. The structural reliability analysis (SRA) method is the most established and explicitly considers the variation of parameters in a Monte-Carlo simulation, enabling load and resistance factors to be calculated with a defined reliability level. A more recently developed methodology is documented in DNV-RP-F110 and provides a unified approach to the calculation of safety factors. The approach was calibrated using structural reliability based methods, undertaken with target reliability levels that are compliant with DNV-OS-F101. This paper presents a review of two key components of OOS UHB assessments. These components are the accuracy of post-lay survey data and the load resistance factor calculation method. These components are reviewed in the context of SRA and DNV-RP-F110 based assessments for a range of pipeline sizes, and ranges of soil and operational parameters. This enables characterisation of the differences between the two methodologies for ranges of design parameters that represent the majority of in-field flowlines that are installed in the United kingdom Continental Shelf (UKCS). SRA and DNV-RP-F110 derived load and resistance factors are compared and the effect of survey data smoothing upon rock-dump requirements is also discussed.


2011 ◽  
Vol 255-260 ◽  
pp. 338-344 ◽  
Author(s):  
Ying Wang ◽  
Feng Lin ◽  
Xiang Lin Gu

Due to the absence of provision for the load and resistance factors in design codes in China, designers often quote the provisions which are given in criterion or guidance of other countries such as USA. However, the partial safety factors of the load are various in different criterions. Based on the reliability theory, the load and resistance factors for progressive collapse resistance design of building structures were determined in this study. Firstly the simplified format of design expression in the ultimate state was obtained according to the expression in routine structural design. Then the failure probability of a structure during design reference period was taken as the sum of the probability of all incompatible failure events in this period, and the objective reliability index of the structure could be obtained. Finally using trial-and-error procedure and JC method, reliability analysis was performed for structural members to obtain the partial safety factors of load effects and resistance and the coefficient for combination value of load effects in design expression in the ultimate state. In this paper the load and resistance factors for progressive collapse resistance design of reinforced concrete structures subjected to blast was calculated as an example, and the recommendation values were given for the application at last.


Author(s):  
Paulo Mauricio Videiro ◽  
Luis Volnei Sudati Sagrilo ◽  
Edison Castro Prates de Lima

This paper proposes a Load and Resistance Factors Design (LRFD) code format for structural components of offshore structures under multiple load effects. This code format accounts for the long-term variation of seastate and the actual correlation between dynamic load effects due to environmental actions. Ultimate limit states are formulated in terms of an Interaction Ratio (IR) random variable, such that the long-term extreme value of IR greater than unity means component failure. The long-term distribution of IR is obtained by combining the distribution of each short-term seastate. The short-term response of the generally nonlinear IR is determined by time domain simulation, taking into account partial load and resistance factors. The IR short-term distribution may be fitted, for instance, by using Rayleigh or Weibull distribution. The main advantages of the proposed code format are: • This code format accounts implicitly and correctly for the actual correlation among all dynamic environmental load processes. • Structural designers have used interaction ratios for a long time. Hence, it is straightforward to evolve from a deterministic stage of looking for IR < 1, as in old Working Stress Design codes, to a code format where the aim is to design structural components with long term IR extreme value < 1. The feasibility of the proposed code format is demonstrated by calibrating partial factors for beam-column cylindrical members based on components of a Floating Production System Semi-submersible hull.


Sign in / Sign up

Export Citation Format

Share Document