Improving Soil-Water Characteristics and Pore Structure of Silty Soil Using Nano-aqueous Polymer Stabilisers

Author(s):  
Wei Huang ◽  
Cuiying Zhou ◽  
Zhen Liu ◽  
Hao Sun ◽  
Jiaxin Du ◽  
...  
2021 ◽  
Vol 31 (5) ◽  
pp. 1452-1464
Author(s):  
Zhong-qun GUO ◽  
Jian-rong ZHOU ◽  
Ke-fan ZHOU ◽  
Jie-fang JIN ◽  
Xiao-jun WANG ◽  
...  

Author(s):  
Pan Hu ◽  
Qing Yang ◽  
Maotian Luan

The soil-water characteristic curve (SWCC) is a widely used experimental means for assessing fundamental properties of unsaturated soils for a wide range of soil suction values. The study of SWCC is helpful because some properties of unsaturated soils can be predicted from it. Nowadays, much attention has been paid to the behaviours of highly compacted bentonite-sand mixtures used in engineering barriers for high level radioactive nuclear waste disposal. It is very important to study the various performances of bentonite-sand mixtures in order to insure the safety of high-level radioactive waste (HLW) repository. After an introduction to vapor phase method and osmotic technique, a laboratory study has been carried out on compacted bentonite-sand mixtures. The SWCC of bentonite-sand mixtures has been obtained and analyzed. The results show that the vapor phase method and osmotic technique is suitable to the unsaturated soils with high and low suction.


Soil Research ◽  
1969 ◽  
Vol 7 (2) ◽  
pp. 79 ◽  
Author(s):  
AJ Peck

Air bubbles in soil water affect both hydraulic conductivity and moisture content at a given capillary potential. Consequently changes in the volume of entrapped air, which are not included in the specification of relationships between hydraulic conductivity, moisture content, and capillary potential, will affect all soil-water interactions. Current understanding of the process of air bubble entrapment during infiltration suggests that, in nature, significant air entrapment will often occur. It is shown that infiltrating water can dissolve only a very small volume of air, much less than the amount usually entrapped. Air bubbles in saturated soils are unstable since their pressure must exceed atmospheric, resulting in a diffusive flux of dissolved air from bubbles to menisci contacting the external atmosphere. However, stable bubbles are possible in unsaturated soils. Bubbles which are constrained by pore architecture to non-spherical shapes are usually stable, and spherical bubbles can be stable when the magnitude of the capillary potential exceeds about 3 bars. An approximate analysis of the characteristic time of bubble equilibration indicates that, in an example, it is of order 104 sec, but it may be greater or less by at least a factor 10. Since the equilibration time will be often at least as large as the period of significant soil temperature changes, it cannot be assumed that the entrapped air in a field soil is in an equilibrium state. In such circumstances unstable bubbles may be quasi-permanent. It is suggested that the slow growth of entrapped bubbles may account for the anomalously slow release of water observed in some outflow experiments. Changes of entrapped air volume may also account for the reported dependence of soil-water characteristics on the magnitude of the steps of capillary potential.


2015 ◽  
Vol 52 (9) ◽  
pp. 1331-1344 ◽  
Author(s):  
W.M. Yan ◽  
Guanghui Zhang

Experiments were undertaken to study the soil-water characteristics of compacted sandy soil (SS) and cemented soil (CS) in field and laboratory conditions. The influence of vegetation and material density on the development of negative pore-water pressure (PWP) and degree of saturation (Sr) in the studied materials was investigated. The field planting experiments demonstrated a promising survival rate of Schefflera heptaphylla in both types of material, while the (SS) promoted better growth of the seedlings than the cemented one. In the field study, PWP and Sr of the compacted SS responded noticeably and promptly to natural drying–wetting cycles. However, the responses in the CS were relatively mild. When subjected to the same drying–wetting cycles, PWP responded more slowly and to a smaller magnitude compared with that of the uncemented counterpart. In addition, Sr changed little in CS. An increase in the density of the SS promoted rapid development of negative PWP, while an opposite trend was observed for CS. Attempts have been made to explain the observations from the perspectives of material permeability and change in water content during a drying period in both soil types. Furthermore, in SS, the development of PWP (with a measurement limit of −90 kPa) was minimally affected by the presence of vegetation, while vegetation noticeably helped the development of negative PWP in CS. Bounds of the soil-water characteristic curve (SWCCs) of the studied materials were presented based on estimates from the drying and wetting scanning curves derived from the field monitoring. A corresponding laboratory study was carried out in an environmental chamber with controllable temperature and humidity. Monitoring results from the laboratory agreed qualitatively with those obtained from the field.


Sign in / Sign up

Export Citation Format

Share Document