A method of micrositing of wind turbine on building roof-top by using joint distribution of wind speed and direction, and computational fluid dynamics

2012 ◽  
Vol 26 (12) ◽  
pp. 3981-3988 ◽  
Author(s):  
Bavuudorj Ovgor ◽  
Sang-Kwon Lee ◽  
Seungbae Lee
2021 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Hangga Wicaksono ◽  
Sugeng Hadi Susilo ◽  
Bayu Pranoto ◽  
Muhammad Fakhruddin

The inconsistency of the wind flow considered as one of the factors which tend to decrease the performance of the wind turbine. This paper proposes a further analysis of the initial rotation characteristic of a hybrid Savonius - Darrieus wind turbine. The addition of the Darrieus blade intends to increase the aerodynamic stability of the overlapping Savonius turbine. This study implements 2D CFD transient analysis using the 6DOF methods in 0<sup>0</sup>, 30<sup>0</sup>, 60<sup>0</sup>, and 90<sup>0</sup> Darrieus blade position along with 2 m/s, 4 m/s, and 6 m/s wind speed variations. The results of the aerodynamic analysis show that the location of the Darrieus 30<sup>0</sup> turbine provides the greatest initial repulsion, especially when the turbine rotation is above 90<sup>0</sup>, the position of the Darrieus blade can provide additional impulse force when the Savonius turbine tends to be passive. This effect occurs more significant at higher wind speeds. Savonius with 3-blade modification has a more stable level of force distribution than the 2-blade modification, although the value is smaller. This shows that the 3-blade Savonius provide a higher stability of angular velocity development.


2016 ◽  
Vol 7 (2) ◽  
pp. 85-94
Author(s):  
N. Amahjour ◽  
A. Khamlichi

Wind velocity profile varies in the boundary layer according to a complex pattern that depends hugely on the surface roughness and local Reynolds number. The presence of a macroscopic obstacle on the ground surface modifies considerably the flow characteristics of wind speed profile. In this study, the effect on wind speed resulting from local circulatory motion induced by the existence of an obstacle is analyzed in stationary conditions under the assumption of two-dimensional approximation of the problem. Computational fluid dynamics is used to solve the turbulent air flow equations that consist of Navier–Stokes equations coupled to a K-ε turbulence model. A bounded domain having a rectangular form was introduced in order to schematize the atmospheric region containing the obstacle and wind turbine. The boundary conditions at ground surface were fixed by applying a modified wall law. The other boundary conditions included a logarithmic velocity profile at the input, a uniform speed applied on the upper edge of the rectangular domain and a uniform pressure in the outlet area. To solve the obtained equations, Comsol Multiphysics software package was used. The obtained results have shown that the presence of an obstacle has a huge effect on the wind profile pattern and affects largely the extractable power from wind by the wind turbine system.


Author(s):  
Sanjay Nikhade ◽  
Suhas Kongre ◽  
S. B. Thakre ◽  
S. S. Khandare

This paper presents a combined experimental and Computational Fluid Dynamics (CFD) simulation of Micro wind Turbine with 2.28 meters rotor Diameter is performed using the FLUENT 16.2 WORKBENCH. A Micro Horizontal Axis Three Blade Wind Turbine was designed, developed and tested for power performance on new airfoil AFN2016 Designed. The three blades were fabricated from glass fiber with a rotor swept area of 3.14 sq.m for the 1-meter length of the blade and angle of attack experimentally determined to be 5º.The blade is designed for tip speed ratio (TSR) of 7. The power out measured for wind speed from 3.0m/s to 9.0 m/s. The comparison of the CFD and experimental results on the relationship between the power obtained and the wind speed of the wind turbine at the wind from 3-9 m/s. It can be clearly seen that the experimental data match quite well again with the numerical analysis and they both demonstrated that the power of wind turbine increasing with wind speed increases.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


2012 ◽  
Vol 256-259 ◽  
pp. 2739-2742
Author(s):  
Ji Hong Bi ◽  
Peng Lu ◽  
Jian Wang ◽  
Chun Bao

A bridge, which is located in the route of typhoon, is considered how to assure normal traffic use against strong winds. As one of the measures, wind barrier is proposed to be set on both sides of the bridge section for reducing wind velocity across it. In this study, an analysis by using CFX, a computational fluid dynamics program, is carried out to investigate the effects of wind barrier. The speed of wind is assumed as 60m/s. To find out an efficient design of the boards, different porosity ratios(r) of the boards is assumed for comparison. The result shows that wind barrier could reduce the wind speed across the bridge effectively.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


Sign in / Sign up

Export Citation Format

Share Document