scholarly journals The Protect Air Film of an Exterior Window

Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed

2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2014 ◽  
Author(s):  
S. Paul

Computational fluid dynamics (CFD) was used to analyze the flow around a modern research ship to ensure that exhaust gases would not adversely impact the air sampling mast. The air sampling mast measures and records the air to understand the environment that the vessel is operating in. There are operational situations where the wind speed and direction are such that the engine exhaust gases can be near the air sampling mast. The results showed that for most of conditions examined the exhaust gases would not reach the air sampling mast. The stern to bow wind was the only direction that had an interaction between the air sampling mast and exhaust gases. The lower the relative wind speed the more likely that interaction. The wind speeds and directions that do have an interaction with the air sampling mast can be used to help the operator set guidelines on when to use the air sampling mast.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4660 ◽  
Author(s):  
Marcin Sosnowski

The possibility of implementing the innovative multi-disc sorption bed combined with the heat exchanger into the adsorption cooling technology is investigated experimentally and numerically in the paper. The developed in-house sorption model incorporated into the commercial computational fluid dynamics (CFD) code was applied within the analysis. The research allowed to define the design parameters of the proposed type of the sorption bed and correlate them with basic factors influencing the performance of the sorption bed and its dimensions. The designed multi-disc sorption bed is characterized by great scalability and allows to significantly expand the potential installation sites of the adsorption chillers.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Siong Lee ◽  
Thomas Choong ◽  
Luqman Abdullah ◽  
Mus’ab Abdul Razak ◽  
Zhen Ban

For a gas-liquid separator sizing, many engineers have neglected the flow pattern of incoming fluids. The impact of inlet slug flow which impeded onto the separator’s liquid phase will cause a separator fails to perform when sloshing happened in the separator. To date, the study on verifying the impact of inlet slug flow in a separator remains limited. In this paper, the impact of inlet momentum and inlet slug flow on the hydrodynamics in a separator for cases without an inlet device were investigated. The experimental and Computational Fluid Dynamics (CFD) results of cavity formation and sloshing occurrence in the separator in this study were compared. A User Defined Function (UDF) was used to describe the inlet slug flow at the separator inlet. Inlet slug flow occurred at inlet momentum from 200 to 1000 Pa, and sloshing occurred in the separator at 1000 Pa. Both experimental and simulated results showed similar phenomena.


Author(s):  
Ramiz Kameel ◽  
Essam E. Khalil

Airflow characteristics in ventilated and air-conditioned spaces play an important role to attain comfort and hygiene conditions. This paper utilizes a 3D time-dependent Computational Fluid Dynamics (CFD) model to assess the airflow characteristics in different air-conditioned spaces. It is found that the optimum airside design system can be attained, if the airflow is directed to pass all the enclosure areas before the extraction. Still most of these factors and evaluation indices have the shortage of adequately describe the influence of the recirculation zones on the occupancy zone and also on the fresh supplied air. The model of evaluation should assess the airflow characteristics in any enclosure according to its position in the enclosure and the expected target of it along its pass to the extraction.


Author(s):  
Sotos C. Generalis ◽  
Gregory M Cartland Glover

Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.


Author(s):  
Shweta Pal ◽  
◽  
Arun Kumar Wamankar ◽  
Sailendra Dwivedi

Condenser is a high pressure side heat exchanger in which heated vapor enters and gets converted into liquid form by condensation process. In the condenser coil, gaseous substance is condensed into liquid by transferring latent heat content present in it to the surrounding. In the whole process, mode of heat transfer is conduction in condenser coil and forced convection between refrigerant and condenser. Any refrigeration system's backbone is comprised of condensers. It aids in the transfer of heat from the refrigerant to the universal sink, which is the atmosphere. The latent heat of the refrigerant is lost in the condenser. At the entry of the condenser, vapours from the compressor enter, and during the length of the condenser, the vapours are converted to liquid form, resulting in refrigerant in the form of saturated or even sub-cooled liquid form at the condenser's exit. In several sectors of chemical and petroleum engineering, computational fluid dynamics (CFD) is a common tool for simulating flow systems. As a branch of fluid mechanics, computational fluid dynamics (CFD) is an appropriate tool for investigating and modelling the ANSYS Program. The applicability of CFD studies for simulating the ANSYS Program was reviewed in this work. Ansys CFD is one of the industry's most powerful simulation packages


Sign in / Sign up

Export Citation Format

Share Document