Vibration control of rotor system by ultrasonic excited limiter

2015 ◽  
Vol 29 (5) ◽  
pp. 1889-1897 ◽  
Author(s):  
Hongliang Yao ◽  
Qian Zhao ◽  
Hao Wu ◽  
Bangchun Wen
1997 ◽  
Vol 63 (616) ◽  
pp. 4102-4107 ◽  
Author(s):  
Kazuki MIZUTANI ◽  
Akitaka ASAI ◽  
Kazumichi KATO

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Liu ◽  
Shuaishuai Ming ◽  
Siyao Zhao ◽  
Jiyuan Han ◽  
Yaxin Ma

In this paper, in order to solve the problem of unbalance vibration of rigid rotor system supported by the active magnetic bearing (AMB), automatic balancing method is applied to suppress the unbalance vibration of the rotor system. Firstly, considering the dynamic and static imbalance of the rotor, the detailed dynamic equations of the AMB-rigid rotor system are established according to Newton’s second law. Then, in order to rotate the rotor around the inertia axis, the notch filter with phase compensation is used to eliminate the synchronous control current. Finally, the variable-step fourth-order Runge–Kutta iteration method is used to solve the unbalanced vibration response of the rotor system in MATLAB simulation. The effects of the rotational speed and phase compensation angle on the unbalanced vibration control are analysed in detail. It is found that the synchronous control currents would increase rapidly with the increase of rotational speed if the unbalance vibration cannot be controlled. When the notch filter with phase shift is used to balance the rotor system automatically, the control current is reduced significantly. It avoids the saturation of the power amplifier and reduces the vibration response of the rotor system. The rotor system can be stabilized over the entire operating speed range by adjusting the compensation phase of the notch filter. The method in the paper is easy to implement, and the research result can provide theoretical support for the unbalance vibration control of AMB-rotor systems.


2021 ◽  
Vol 494 ◽  
pp. 115883
Author(s):  
Qian Zhao ◽  
Jing Yuan ◽  
Huiming Jiang ◽  
Hongliang Yao ◽  
Bangchun Wen

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Jun Liu ◽  
Yukio Ishida ◽  
Yusuke Yoshimura

In rotating machinery, rotor unbalance causes many resonances at critical speeds corresponding to different modes. In this paper, a vibration control method for rotor systems utilizing disturbance observer is proposed. The nonlinear terms, unbalance, parameter variations, and uncertain terms of a rotor system are lumped into a disturbance term, and this term is canceled by using disturbance observer. As a result, the vibrations are suppressed to small amplitudes all over the rotational speed range. Simultaneously, unbalance of the first mode is estimated from the information of control force of disturbance observer. Moreover, the effects of parameter errors of the control system are also investigated. The validity of the proposed method is verified through numerical simulations and experiments.


1999 ◽  
Vol 122 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Yao Guozhi ◽  
Yap Fook Fah ◽  
Chen Guang ◽  
Meng Guang ◽  
Fang Tong ◽  
...  

In this paper, a new electro-rheological multi-layer squeeze film damper (ERMSFD in short) is designed first and the constitutional Reynolds equation is established. Then the behavior of the rotor system is analyzed, the vibration around the first critical speed is suppressed and an on/off control is proposed to control the large amplitude around the first critical speed. A control method is used to suppress the sudden unbalance response. Finally, experiments are carried out to investigate the behavior of the rotor system to prove the effectiveness of the ER damper to suppress the vibration around the critical speed and the sudden unbalance response. [S0739-3717(00)00301-9]


Author(s):  
Baojiang Liu ◽  
Litang Yan ◽  
Qihan Li ◽  
Zigen Zhu

On the basis of characteristics of vibration in the rotor system with spring nonlinearity, a new method for vibration control has been developed. In the method, the spring characteristics of a bearing housing are controlled to be of softening nonlinearity when the rotor supported on it is accelerated and to be of hardening one when it is decelerated. So vibratory amplitudes of the rotor system always vary along the smallest solution curve in the whole operating process. A model of vibration of the rotor system supported on the controllable hearing housing is derived. Its dynamic behaviour is predicted and verified by experiments. Both theoretical and experimental results show that not only vibratory amplitudes and transmitted forces are suppressed significantly but also nonlinear vibration performance of the rotor supported on squeeze film dampers, such as “lock up” at rotor pin-pin critical speeds and asynchronous vibration, can be avoided.


Sign in / Sign up

Export Citation Format

Share Document