Dynamic analysis of train-bridge interaction system with flexible car-body

2015 ◽  
Vol 29 (9) ◽  
pp. 3571-3580 ◽  
Author(s):  
Kunpeng Wang ◽  
He Xia ◽  
Man Xu ◽  
Weiwei Guo
2014 ◽  
Vol 14 (03) ◽  
pp. 1350069 ◽  
Author(s):  
N. Liu ◽  
W. Gao ◽  
C. Song ◽  
N. Zhang

This paper presents the hybrid probabilistic interval dynamic analysis of vehicle–bridge interaction system with a mixture of random and interval properties. The vehicle's parameters are considered as interval variables and the bridge's parameters are treated as random variables. A half car model is used to represent a moving vehicle and the bridge is modeled as a simply supported Euler–Bernoulli beam. By introducing the random interval moment method (RIMM) into the dynamic analysis of vehicle–bride interaction system, the expressions for the mean value and standard deviation of the random interval bridge dynamic response are developed. The midpoint and interval width of the first two statistical moments are then determined. Examples are used to illustrate the effectiveness of the presented method. A hybrid simulation method combining direct simulations for interval variables and Monte Carlo simulations for random variables is implemented to validate the computational results. The effects of individual system parameters on bridge response are also investigated.


2007 ◽  
Vol 14 (6) ◽  
pp. 429-446 ◽  
Author(s):  
Ping Lou ◽  
Qing-yuan Zeng

Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.


Author(s):  
S. Palli ◽  
R. Koona ◽  
S.K. Sharma ◽  
R.C. Sharma

Railway vehicle is one of the rigorously developing passenger and goods carrier in the past few centuries. Dynamic behaviour of the railway coach is a vital aspect in its design and also in terms of passenger safety and ride comfort. Dynamic response includes both deterministic and probabilistic analyses. Modal, harmonic and transient dynamic analysis is part of deterministic analyses, whereas random response using spectrum methods and power spectral density (PSD) is a probabilistic approach. This paper is an attempt to cover various modelling and simulation methods of the railway bogie and coach adopted by various researchers to understand the dynamic behaviour of the railway coach. Further, the research findings of various dynamic parameters obtained theoretically and practically against different inputs like sinusoidal and random inputs to the car body have been discussed. This forms a basis in understanding the development of railway coach design when one is interested in carrying out free and forced vibration analysis on the coach, as well as assists to optimize various design parameters of components like bogie, car body and suspension elements in terms of vehicle dynamics.


2014 ◽  
Vol 553 ◽  
pp. 545-550
Author(s):  
Neng Guang Liu ◽  
Wei Gao ◽  
Chong Ming Song ◽  
Nong Zhang

A hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system with a mixture of random and interval properties is studied based on finite element analysis framework. A half car model is used to represent a moving vehicle and the bridge is modeled as a simply supported Euler-Bernoulli beam. The vehicle’s parameters are considered as interval variables and the bridge’s parameters are treated as random variables. The mathematical model of vehicle-bridge interaction system is established based on the finite element model. By introducing the random interval perturbation method into the dynamic analysis of vehicle-bride interaction system, the expressions for the mean value and variance of the bridge dynamic response are developed. Examples are used to illustrate the effectiveness of the presented method. The accuracy and effectiveness of the numerical results are verified by a hybrid simulation method combining direct simulations for interval variables and Monte-Carlo simulations for random variables.


2017 ◽  
Vol 88 (3) ◽  
pp. 2139-2159 ◽  
Author(s):  
Shihua Zhou ◽  
Guiqiu Song ◽  
Zhaohui Ren ◽  
Bangchun Wen

Sign in / Sign up

Export Citation Format

Share Document