Curvature area prediction for the deep drawing-ironing process of a cylindrical cup using finite element method and regression analysis

2018 ◽  
Vol 32 (12) ◽  
pp. 5913-5918 ◽  
Author(s):  
Changhoe Lee ◽  
Seokmoo Hong
2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2013 ◽  
Vol 40 (1) ◽  
pp. 125-130
Author(s):  
Trinet Yingsamphancharoen ◽  
Nakarin Srisuwan ◽  
Chira Densangarun

2008 ◽  
Vol 07 (01) ◽  
pp. 21-32
Author(s):  
T. S. YANG ◽  
N. C. HWANG ◽  
R. F. SHYU

Deep drawing process, one of sheet metal forming methods, is very useful in industrial field because of its efficiency. The deep drawing process is affected by many material and process parameters, such as the strain-hardening exponent, plastic strain ratio, anisotropic property of blank, friction and lubrication, blank holder force, presence of drawbeads, the profile radius of die and punch, etc. In this paper, a finite element method is used to investigate the cylindrical deep drawing process. The thickness of product and the forming force predicted by current simulation are compared with the experimental data. A finite element method is also used to investigate the maximum forming load and the minimum thickness of products under various process parameter conditions, including the profile radius of die, the clearance between die cavity and punch and the blank holding force. Furthermore, the material anisotropy and process parameters effect on the earing are also investigated.


2019 ◽  
Vol 957 ◽  
pp. 103-110
Author(s):  
Dan Chiorescu ◽  
Esmeralda Chiorescu ◽  
Gheorghe Nagîţ ◽  
Sergiu Constantin Olaru

Deep drawing is a complex process influenced by the geometric parameters of the die-punch system. In the present paper we study the behavior of the semi-finished product, in the process of drawing deep cylindrical parts, using the finite element method and the software package of the ANSYS program. In order to reduce the cost and design time, an analysis of the variation of the radius connection is carried out, resulting in low energy consumption, using the finite element method. By analysing the radius of connection of the plate, we identify future directions useful in substantiating the elaboration of a judicious experimental program and optimizing the geometric shape of the finished parts.


Sign in / Sign up

Export Citation Format

Share Document