Fault diagnosis of valve clearance in diesel engine based on BP neural network and support vector machine

2016 ◽  
Vol 22 (6) ◽  
pp. 536-543 ◽  
Author(s):  
Fengrong Bi ◽  
Yiping Liu
2014 ◽  
Vol 666 ◽  
pp. 203-207
Author(s):  
Jian Hua Cao

This paper is to present a fault diagnosis method for electrical control system of automobile based on support vector machine. We collect the common fault states of electrical control system of automobile to analyze the fault diagnosis ability of electrical control system of automobile based on support vector machine. It can be seen that the accuracy of fault diagnosis for electrical control system of automobile by support vector machine is 92.31%; and the accuracy of fault diagnosis for electrical control system of automobile by BP neural network is 80.77%. The experimental results show that the accuracy of fault diagnosis for electrical control system of automobile of support vector machine is higher than that of BP neural network.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Yan ◽  
Yao Cui ◽  
Lin Zhang ◽  
Chao Zhang ◽  
Yongzhi Yang ◽  
...  

It is not easy to find marine cracks of structures by directly manual testing. When the cracks of important components are extended under extreme offshore environment, the whole structure would lose efficacy, endanger the staff’s safety, and course a significant economic loss and marine environment pollution. Thus, early discovery of structure cracks is very important. In this paper, a beam structure damage identification model based on intelligent algorithm is firstly proposed to identify partial cracks in supported beams on ocean platform. In order to obtain the replacement mode and strain mode of the beams, the paper takes simple supported beam with single crack and double cracks as an example. The results show that the difference curves of strain mode change drastically only on the injured part and different degrees of injury would result in different mutation degrees of difference curve more or less. While the model based on support vector machine (SVM) and BP neural network can identify cracks of supported beam intelligently, the methods can discern injured degrees of sound condition, single crack, and double cracks. Furthermore, the two methods are compared. The results show that the two methods presented in the paper have a preferable identification precision and adaptation. And damage identification based on support vector machine (SVM) has smaller error results.


2012 ◽  
Vol 166-169 ◽  
pp. 1366-1369
Author(s):  
Jian Guo Chen ◽  
Zhao Guang Li

Support vector machine is applied to springback forecasting for steel structure in the paper. In the steel structure, pressure-pad-force, friction coefficient and die filleted corner have a certain influence on springback amount.We employ BP neural network to compare with support vector machine to show the superiority of support vector machine in this study. Finally,we give the comparison of the prediction error of springback for steel structure between support vector machine and BP neural network. Evidently,the springback prediction for steel structure of support vector machine is better than that of BP neural network.


2012 ◽  
Vol 433-440 ◽  
pp. 7516-7521
Author(s):  
Ling Zhang

Aiming at the deficiency of the local minimum occurring in neural network used for speech recognition, the paper employs support vector machine (SVM) to recognize the speech signal with four different components. First, SVM is utilized to perform the speech recognition. Then, the results are compared with those obtained by the BP neural network method. The comparison shows that SVM effectively overcomes the local minimum existing in neural network and has the advantages of the accurate and fast classification, indicating that SVM looks feasible to recognize the speech signal.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3367-3374 ◽  
Author(s):  
Guoli Yu ◽  
Jinge Sang ◽  
Yafei Sun

The paper aims to study the identification and diagnosis of infrared thermal fault of airborne circuit board of equipment, expand the application of intelligent algorithm in infrared thermal fault diagnosis, and promote the development of computer image processing technology and neural network technology in the field of thermal diagnosis. Taking the airborne circuit board in the boiler plant as the research object, first, the sequential analysis method was selected to collect the temperature changes during the operation of the circuit board. Second, on the basis of convolutional neural network, the program was written in Python, and the Relu function was used as the activation function establish the thermal fault diagnosis method of the on-board circuit board of the boiler plant equipment based on the convolutional neural network model. Third, based on the support vector machine intelligent algorithm, genetic algorithm was used to optimize the parameters, and combined with the grey prediction model, the infrared thermal fault diagnosis scheme of the circuit board of the multistage support vector machine boiler plant equipment was constructed. The results showed that the accuracy of the model after 6000 iterations was stable between 0.92-0.96, and the loss function value was stable at about 0.17. After the optimization of genetic algorithm, the accuracy of thermal fault diagnosis based on support vector machine model was optimized. Compared with grey prediction model, the accuracy of support vector machine model for fault diagnosis was higher, mean square error value was 0.0258, and the correlation coefficient was 91.55%. To sum up, the support vector machin model shows higher accuracy than grey prediction model, which can be used for thermal fault diagnosis.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 137395-137406 ◽  
Author(s):  
Laohu Yuan ◽  
Dongshan Lian ◽  
Xue Kang ◽  
Yuanqiang Chen ◽  
Kejia Zhai

Sign in / Sign up

Export Citation Format

Share Document