Use of alternative plant growth regulators and carbon sources to manipulate Dianthus caryophyllus L. shoot induction in vitro

2017 ◽  
Vol 28 (3) ◽  
pp. 583-588 ◽  
Author(s):  
Alexander S. Lukatkin ◽  
Evgenij V. Mokshin ◽  
Jaime A. Teixeira da Silva
2017 ◽  
Vol 27 (1) ◽  
pp. 13-20
Author(s):  
Hamze Teymourian ◽  
Mohammad Ali Ebrahimi ◽  
Masoud Tohidfar ◽  
Nazi Farsaloon ◽  
Nasim Zarinpanjeh

The effect of explant sources and plant growth regulators on callus induction and plantlet regeneration of Trachyspermum copticum were explored. Different explants including hypocotyl, cotyledonary node and leaf were cultured on MS supplemented with different combinations and concentrations of plant growth regulators including 2,4‐D (0.2‐3 0.5 mg/l), NAA (2 mg/l), BAP (1‐3 mg/l), Kn (0.5 mg/l) and IAA (0.8 mg/l). The best response for callus induction (100%) as well as quality was observed from cotyldonary node segments cultured on MS supplemented with 2, 4‐D at 1 mg/l in combination with Kn at 0.5 mg/l. Calli derived from various explants were subcultured on shoot induction media with different compositions and concentrations of medium. MS without any plant growth regulator promoted the highest frequency of shoot regeneration (100%) and also mean number of developed shoots per explants (3.8) showed the same result. Regenerated shoots were then rooted on three‐fourth strength MS with 75% efficiency after 30 days.Plant Tissue Cult. & Biotech. 27(1): 13-20, 2017 (June)


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 486
Author(s):  
María Eugenia Martínez ◽  
Lorena Jorquera ◽  
Paola Poirrier ◽  
Katy Díaz ◽  
Rolando Chamy

There are several studies on the medicinal properties of dandelions (Taraxacum officinale), but few studies are aimed at understanding the in vitro germination process of this plant to improve its propagation. This research was focused on studying in vitro seed germination and development of seedlings under different carbon sources, glucose (GLU) or sucrose (SUC) and its concentrations (1.0–5.5%). Additionally, the effect of supplementation with plant growth regulators (PGRs) was studied, measuring the germination capacity, uncertainty and synchrony. Germination was promoted under low carbon source concentrations (≤2.3%), whereas higher concentrations (≥3.2%) had a detrimental effect on this process. GLU allowed the final germination percentages to be slightly better than SUC. Uniformity and synchrony values improved with the presence of PGRs. Results suggested that the best condition to assess T. officinale seed germination is in a medium containing GLU 2.3%, 0.5 mg/L 1-Naphthaleneacetic acid (NAA) and 0.5 mg/L 6-Benzylaminopurine acid (BAP). After germination, the best condition for optimal growth of T. officinale seedlings was 1.0% SUC supplemented with 0.225 mg/L of NAA and 3.0 mg/L of BAP for initial shoot development. The survival rate was 97% after greenhouse acclimatization. This new method of germination was implemented for the massive propagation of T. officinale for further medicinal studies.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2011 ◽  
Vol 3 (3) ◽  
pp. 97-100
Author(s):  
Naimeh SHARIFMOGHADAM ◽  
Abbas SAFARNEJAD ◽  
Sayed Mohammad TABATABAEI

The Almond (Amygdalus communis) is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid) + 1 mg/l BA (Benzyl Adenine). Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid).


Sign in / Sign up

Export Citation Format

Share Document