scholarly journals A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics

2019 ◽  
Vol 30 (4) ◽  
pp. 3458-3483
Author(s):  
Javier Jiménez-Garrido ◽  
Javier Sanz ◽  
Gerhard Schindl

Abstract We prove that, for asymptotically bounded holomorphic functions in a sector in $$\mathbb {C},$$ C , an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.


Author(s):  
ALEXANDER BRUDNYI

Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .



Author(s):  
OLGA BALKANOVA ◽  
DMITRY FROLENKOV ◽  
MORTEN S. RISAGER

Abstract The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.



1997 ◽  
Vol 29 (02) ◽  
pp. 374-387 ◽  
Author(s):  
V. Čekanavičius

The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.



2017 ◽  
Vol 13 (08) ◽  
pp. 2097-2113 ◽  
Author(s):  
Shubho Banerjee ◽  
Blake Wilkerson

We study the Lambert series [Formula: see text], for all [Formula: see text]. We obtain the complete asymptotic expansion of [Formula: see text] near [Formula: see text]. Our analysis of the Lambert series yields the asymptotic forms for several related [Formula: see text]-series: the [Formula: see text]-gamma and [Formula: see text]-polygamma functions, the [Formula: see text]-Pochhammer symbol and the Jacobi theta functions. Some typical results include [Formula: see text] and [Formula: see text], with relative errors of order [Formula: see text] and [Formula: see text] respectively.



1987 ◽  
Vol 35 (3) ◽  
pp. 471-479
Author(s):  
H. O. Kim ◽  
S. M. Kim ◽  
E. G. Kwon

For 0 < p < ∞ and 0 ≤a; ≤ 1, we define a space Hp, a of holomorphic functions on the unit disc of the complex plane, for which Hp, 0 = H∞, the space of all bounded holomorphic functions, and Hp, 1 = Hp, the usual Hardy space. We introduce a weak type operator whose boundedness extends the well-known Hardy-Littlewood embedding theorem to Hp, a, give some results on the Taylor coefficients of the functions of Hp, a and show by an example that the inner factor cannot be divisible in Hp, a.



1962 ◽  
Vol 14 ◽  
pp. 334-348 ◽  
Author(s):  
G. T. Cargo

In this paper, we shall be concerned with bounded, holomorphic functions of the formwhere(1)(2)and(3)B(z{an}) is called a Blaschke product, and any sequence {an} which satisfies (2) and (3) is called a Blaschke sequence. For a general discussion of the properties of Blaschke products, see (18, pp. 271-285) or (14, pp. 49-52).According to a theorem due to Riesz (15), a Blaschke product has radial limits of modulus one almost everywhere on C = {z: |z| = 1}. Moreover, it is common knowledge that, if a Blaschke product has a radial limit at a point, then it also has an angular limit at the point (see 14, p. 19 and 6, p. 457).





2011 ◽  
Vol 52 ◽  
pp. 359-364
Author(s):  
Algimantas Bikelis ◽  
Kazimieras Padvelskis ◽  
Pranas Vaitkus

Althoug Chebyshev [3] and Edeworth [5] had conceived of the formal expansions for distribution of sums of independent random variables, but only in Cramer’s work [4] was laid a proper foundation of this problem. In the case when random variables are lattice Esseen get the asymptotic expansion in a new different form. Here we extend this problem for quasi-lattice random variables.  



2007 ◽  
Vol 39 (4) ◽  
pp. 1070-1097 ◽  
Author(s):  
J. Blanchet ◽  
P. Glynn

Consider a sequence X = (Xn: n ≥ 1) of independent and identically distributed random variables, and an independent geometrically distributed random variable M with parameter p. The random variable SM = X1 + ∙ ∙ ∙ + XM is called a geometric sum. In this paper we obtain asymptotic expansions for the distribution of SM as p ↘ 0. If EX1 > 0, the asymptotic expansion is developed in powers of p and it provides higher-order correction terms to Renyi's theorem, which states that P(pSM > x) ≈ exp(-x/EX1). Conversely, if EX1 = 0 then the expansion is given in powers of √p. We apply the results to obtain corrected diffusion approximations for the M/G/1 queue. These expansions follow in a unified way as a consequence of new uniform renewal theory results that are also developed in this paper.



Sign in / Sign up

Export Citation Format

Share Document