Iterative Learning Control Algorithm for Feedforward Controller of EGR and VGT Systems in a CRDI Diesel Engine

2018 ◽  
Vol 19 (3) ◽  
pp. 433-442
Author(s):  
Kyunghan Min ◽  
Myoungho Sunwoo ◽  
Manbae Han
2020 ◽  
Vol 70 (3) ◽  
pp. 29-34
Author(s):  
Mihailo Lazarević ◽  
Nikola Živković

In this paper an advanced iterative learning control algorithm for rehabilitation exoskeletons is proposed. A simplified biomechanical model is used as the control object to verify control algorithm feasibility. The control design is proposed as two level controller consisting of inner and outer loop. In the inner loop the feedback linearization is applied to cancel out the model nonlinearities. In the outer loop the advanced iterative learning control algorithm of sgnPDD2 type is applied as a feedforward controller and classical PD controller as a feedback controller. Uncertainties are added in order to examine the controller design robustness. Numerical simulation is carried out.


Author(s):  
Zimian Lan

In this paper, we propose a new iterative learning control algorithm for sensor faults in nonlinear systems. The algorithm does not depend on the initial value of the system and is combined with the open-loop D-type iterative learning law. We design a period that shortens as the number of iterations increases. During this period, the controller corrects the state deviation, so that the system tracking error converges to the boundary unrelated to the initial state error, which is determined only by the system’s uncertainty and interference. Furthermore, based on the λ norm theory, the appropriate control gain is selected to suppress the tracking error caused by the sensor fault, and the uniform convergence of the control algorithm and the boundedness of the error are proved. The simulation results of the speed control of the injection molding machine system verify the effectiveness of the algorithm.


2019 ◽  
Vol 292 ◽  
pp. 01010
Author(s):  
Mihailo Lazarević ◽  
Nikola Živković ◽  
Darko Radojević

The paper designs an appropriate iterative learning control (ILC) algorithm based on the trajectory characteristics of upper exosk el eton robotic system. The procedure of mathematical modelling of an exoskeleton system for rehabilitation is given and synthesis of a control law with two loops. First (inner) loop represents exact linearization of a given system, and the second (outer) loop is synthesis of a iterative learning control law which consists of two loops, open and closed loop. In open loop ILC sgnPDD2 is applied, while in feedback classical PD control law is used. Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed advanced open-closed iterative learning control scheme.


Sign in / Sign up

Export Citation Format

Share Document