A new PM2.5-based CADR method to measure air infiltration rate of buildings

Author(s):  
Cong Liu ◽  
Siyu Ji ◽  
Fengjiao Zhou ◽  
Qingbin Lin ◽  
Yiqi Chen ◽  
...  
2018 ◽  
Vol 34 (2) ◽  
pp. 413-424
Author(s):  
H T Jadhav ◽  
S J Hoff ◽  
J D Harmon ◽  
Igancio Alvarez ◽  
D S Andersen ◽  
...  

Abstract. Air infiltration through unplanned inlets is an integral component of any ventilation process. Air infiltration affects the quality of the room environment and can also increase winter heating costs. Precise data on air infiltration is very important in the design of animal room ventilation systems. Nineteen mechanically ventilated (negative pressure type) swine finishing rooms in Iowa were tested for their air infiltration potential. Using the data of 17 rooms, air infiltration rate through the whole room (i.e., total air infiltration, It), curtains (Ic), fans (If), and net building shell (other components, Io) were quantified. Power law equations were developed for infiltration prediction of different room configurations grouped on the basis of their construction style, age, ceiling material, curtain perimeter, and fan backdraft shutter area. All power law models reported in this study were adjusted to predict standard (sea level) infiltration rates. At 20 Pa pressure difference across the room envelope, the predicted standard It infiltration rate for the 17 rooms was 5.96±1.49 air changes per hour (ach); whereas, the predicted standard Ic, If, and Io infiltration rates were 1.49 ±1.00 ach (about 25% of It), 1.52 ±1.38 ach (about 26% of It) and 2.90 ±1.42 ach (about 49% of It), respectively. The standard It infiltration rate trended lower for rooms (n=8) from single room layout barns (5.85 ±1.66 at 20 Pa), rooms (n=8) having a non-metal ceiling (5.85 ±2.15 at 20 Pa), and rooms (n=8) aged = 13 years (5.85 ±2.15 at 20 Pa). The infiltration resistances, calculated using standard sea level infiltration rates, indicated that the curtain, fan, and other infiltration areas of swine finishing rooms changes with barn layout, age, construction material, and pressure difference. Methodology to convert measured infiltration rates to standard sea level weather conditions and to any desired room location was included. Keywords: Infiltration, Swine finishing Barns, Swine finishing rooms, Infiltration prediction, Infiltration quantification, Ventilation.


2008 ◽  
Vol 22 (4) ◽  
pp. 788-797 ◽  
Author(s):  
Jonghoon Park ◽  
Yongsung Jang ◽  
Youngchull Ahn ◽  
Seongir Cheong ◽  
Jaekeun Lee

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ben M. Roberts ◽  
David Allinson ◽  
Kevin J. Lomas

PurposeAccurate values for infiltration rate are important to reliably estimate heat losses from buildings. Infiltration rate is rarely measured directly, and instead is usually estimated using algorithms or data from fan pressurisation tests. However, there is growing evidence that the commonly used methods for estimating infiltration rate are inaccurate in UK dwellings. Furthermore, most prior research was conducted during the winter season or relies on single measurements in each dwelling. Infiltration rates also affect the likelihood and severity of summertime overheating. The purpose of this work is to measure infiltration rates in summer, to compare this to different infiltration estimation methods, and to quantify the differences.Design/methodology/approachFifteen whole house tracer gas tests were undertaken in the same test house during spring and summer to measure the whole building infiltration rate. Eleven infiltration estimation methods were used to predict infiltration rate, and these were compared to the measured values. Most, but not all, infiltration estimation methods relied on data from fan pressurisation (blower door) tests. A further four tracer gas tests were also done with trickle vents open to allow for comment on indoor air quality, but not compared to infiltration estimation methods.FindingsThe eleven estimation methods predicted infiltration rates between 64 and 208% higher than measured. The ASHRAE Enhanced derived infiltration rate (0.41 ach) was closest to the measured value of 0.25 ach, but still significantly different. The infiltration rate predicted by the “divide-by-20” rule of thumb, which is commonly used in the UK, was second furthest from the measured value at 0.73 ach. Indoor air quality is likely to be unsatisfactory in summer when windows are closed, even if trickle vents are open.Practical implicationsThe findings have implications for those using dynamic thermal modelling to predict summertime overheating who, in the absence of a directly measured value for infiltration rate (i.e. by tracer gas), currently commonly use infiltration estimation methods such as the “divide-by-20” rule. Therefore, infiltration may be overestimated resulting in overheating risk and indoor air quality being incorrectly predicted.Originality/valueDirect measurement of air infiltration rate is rare, especially multiple tests in a single home. Past measurements have invariably focused on the winter heating season. This work is original in that the tracer gas technique used to measure infiltration rate many times in a single dwelling during the summer. This work is also original in that it quantifies both the infiltration rate and its variability, and compares these to values produced by eleven infiltration estimation methods.


2018 ◽  
Vol 168 ◽  
pp. 309-318 ◽  
Author(s):  
Wei Liu ◽  
Xingwang Zhao ◽  
Qingyan Chen

2018 ◽  
Vol 34 (4) ◽  
pp. 735-745
Author(s):  
Harishchandra T Jadhav ◽  
Steven J Hoff ◽  
Jay D Harmon ◽  
Daniel S Andersen

Abstract. Data collected on 17 swine finishing rooms from the Midwest region of the United States was used to study the relationship between infiltration rate and selected room characteristics. Effect of individual room characteristics on room infiltration rate were tested by simple linear regression (SLR) while multiple linear regression (MLR) was used to develop models for improved prediction. SLR results revealed that the total (It) and other (Io; non-curtain/fan locations) swine finishing room infiltration rates were inversely related to room width and directly related to room length and ceiling height. As expected, rooms with higher curtain end pocket overlap, curtain closure overlap distance, and in excellent condition had reduced curtain infiltration (Ic). To reduce fan infiltration (If), fan and pump-out cover perimeter and fan area should be minimized. Power law equations fitted for groups of rooms were found ineffective in accounting for the large variability in infiltration rates of swine finishing rooms as compared to MLR models. MLR models developed for It and Io prediction at 10, 20, and 30 Pa pressure differences were found to improve the prediction over power law models for groups of rooms. At 20 Pa, prediction differences compared with individual room measurements for It rate using the suggested MLR model, as compared to power law models for groups of rooms, were less by at least 61%; whereas, in the case of Io rate, prediction differences compared with individual room measurements were less by at least 49%. Recommendations made in this article, with respect to the relationship between a particular room characteristic and room infiltration rate, could be used as guiding principles along with other design criterion to reduce infiltration rates in remodeled and new swine finishing rooms. Keywords: Infiltration, Swine finishing rooms, Ventilation.


2021 ◽  
Author(s):  
Sanam Pouyan

Air infiltration plays a significant role in designing and evaluating the performance and air quality of a building. Air leakage through an existing building enclosure can be detected by using experimental measurements, such as blower door test, tracer gas method, and transient approach. Estimating building air permeability through these methods can be expensive, time consuming, and weather reliant. The economical and environmental effect of air infiltration through building envelope requires higher level of research on locating air leakage locations and estimating air infiltration rate through new techniques, such as acoustical methods. In this research, a general review of airtightness detection and quantification method is presented and acoustical techniques are explored more in depth. Due to the significant impact of window systems on the total air infiltration through the building envelope, the correlation between the sound transmission loss and the air permeability through seven window assemblies in an existing building are explored to investigate acoustical method further. In addition, the acoustic air leakage detection method based on the standard ASTM E1186 is instigated. The results reveal the poor correlation between the airtightness of the windows and the acoustical analysis and investigations


Sign in / Sign up

Export Citation Format

Share Document