Numerical integration algorithm of a new model for metal plasticity and fracture including pressure and lode angle dependence

2009 ◽  
Vol 2 (S1) ◽  
pp. 443-446 ◽  
Author(s):  
L. Malcher ◽  
F. M. Andrade Pires ◽  
J. M. A. César de Sá ◽  
F. X. C. Andrade
Author(s):  
W. J. Langner

Abstract The paper follows studies on simulation of three-dimensional mechanical dynamic systems with the help of sparse matrix and stiff integration numerical algorithms. For sensitivity analyses and the application of numerical optimization procedures it is substantial to calculate the effect of design parameters on the system behaviour by means of derivatives of state variables with respect to the design parameters. For static and quasi static analyses the computation of these derivatives from the governing equations leads to a linear equation system. The matrix of this set of linear equations shows to be the Jacobian matrix required in the numerical integration process solving the system of governing equations for the mechanical system. Thus the factorization of the matrix perfomed by the numerical integration algorithm can be reused solving the linear equation system for the state variable sensitivities. Some example demonstrate the simplicity of building the right hand sides of the linear equation system. Also it is demonstrated that the procedure proposed neatly fits into a modular concept for simulation model building and analysis.


2005 ◽  
Vol 18 (2) ◽  
pp. 239-244
Author(s):  
Zheng-hua Zhou ◽  
Yu-huan Wang ◽  
Quan Liu ◽  
Xiao-tao Yin ◽  
Cheng Yang

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
D. Olvera ◽  
A. Elías-Zúñiga ◽  
L. N. López de Lacalle ◽  
C. A. Rodríguez

We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.


1982 ◽  
Vol 104 (4) ◽  
pp. 778-784 ◽  
Author(s):  
R. A. Wehage ◽  
E. J. Haug

A method is presented for dynamic analysis of systems with impulsive forces, impact, discontinuous constraints, and discontinuous velocities. A method of computer generation of the equations of planar motion and impulse-momentum relations that define jump discontinuities in system velocity for large scale systems is presented. An event predictor, working in conjunction with a new numerical integration algorithm, efficiently controls the numerical integration and allows for automatic equation reformulation. A weapon mechanism and a trip plow are simulated using the method to illustrate its capabilities.


Author(s):  
V. Murugesh ◽  
K. Batri

This paper presents, a design method for the template of the hole-filler used to improve the performance of the character recognition using Numerical integration algorithms. This is done by analyzing the features of the hole-filler template and the dynamic process of CNN and by using popular numerical algorithms to obtain a set of inequalities satisfying its output characteristics as well as the parameter range of the hole-filler template. Some simulation results and comparisons are also presented.


Sign in / Sign up

Export Citation Format

Share Document