Warm forming simulations of Al-Mg alloy sheet using a viscoplastic model and advanced yield functions

Author(s):  
Qing Zhang ◽  
Yong Zhang ◽  
Yuantao Sun ◽  
Dateng Zheng
2010 ◽  
Vol 443 ◽  
pp. 183-188
Author(s):  
Young Seon Lee ◽  
Taek Woo Jung ◽  
Dae Yong Kim ◽  
Young Hoon Moon

Clad metal sheets are composed of one or more different materials joined by resistance seam welding, roll-bonding process, etc. Good formability is an essential property in order to deform a clad metal sheet to a part or component. Temperature is one of the major factors affected the interface strength and formability on warm forming of multilayered sheet metal. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests were performed at various temperatures above 250°C and at various strain rates. The limit drawing ratio (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. Interface strength and fracture pattern were changed mainly by temperature. Uniaxial tensile strength represents entirely different type below and above 200°C at also different strain rate. Mg alloy sheet was fractured earlier more than SUS and Al alloy sheet below 250°C testing temperature. On the contrary, Mg alloy sheet was elongated much more than other metals above 250°C.


2010 ◽  
Author(s):  
Jin-Woo Lee ◽  
Frédéric Barlat ◽  
Dong-Jin Kim ◽  
F. Barlat ◽  
Y. H. Moon ◽  
...  

2010 ◽  
Vol 210 (12) ◽  
pp. 1673-1679 ◽  
Author(s):  
Pin-Hou Sun ◽  
Horng-Yu Wu ◽  
Hsin-Han Tsai ◽  
Chih-Chao Huang ◽  
Ming-Da Tzou

2007 ◽  
pp. 1615-1619
Author(s):  
Yasumasa Chino ◽  
Kensuke Sassa ◽  
Akira Kamiya ◽  
Mamoru Mabuchi

Sign in / Sign up

Export Citation Format

Share Document