scholarly journals Plant regeneration from immature inflorescence derived callus cultures of salt tolerant kallar grass (Leptochloa fusca L.)

2012 ◽  
Vol 18 (4) ◽  
pp. 345-356 ◽  
Author(s):  
M. Praveena ◽  
C. C. Giri
2003 ◽  
Vol 30 (2) ◽  
pp. 168-174 ◽  
Author(s):  
J. Akhter ◽  
K. Mahmood ◽  
K.A. Malik ◽  
S. Ahmed ◽  
R. Murray

Reclamation of saline lands seems difficult for climatic and economic reasons, but cultivation of salt-tolerant plants is an approach to increasing productivity and improvement of salt-affected wastelands. A five-year field study was conducted to evaluate the effects of growing a salt-tolerant species Leptochloa fusca (L.) Kunth (kallar grass) on chemical properties of a saline sodic soil irrigated with poor quality groundwater. Soil salinity, sodicity and pH decreased exponentially by growing kallar grass as a result of leaching of salts from surface (0–20 cm) to lower depths (>100 cm). Concentrations of soluble cations (Na+, K+, Ca2+ and Mg2+) and anions (Cl−, SO42− and HCO3−) were reduced through to greater soil depths. A significant decline in soil pH was attributed to release of CO2 by grass roots and solublization of CaCO3. Both soil salinity and soil pH were significantly correlated with Na+, Ca2+, Mg2+, K+, Cl−, HCO3− and sodium adsorption ratio (SAR). Significant correlations were found between soluble cations (Na+, Ca2+ and K+), soluble anions (Cl−, SO42− and HCO3−) and the SAR. In contrast, there were negative correlations between soil organic matter content and all chemical properties. The ameliorative effects on the soil chemical environment were pronounced after three years of growing kallar grass. Cultivation of kallar grass enhanced leaching and interactions among soil chemical properties and thus restored soil fertility. The soil maintained the improved characteristics with further growth of the grass up to five years suggesting that growing salt-tolerant plants is a sustainable approach to biological amelioration of saline wastelands.


1980 ◽  
Vol 7 (6) ◽  
pp. 635 ◽  
Author(s):  
WR Scowcroft ◽  
PJ Larkin

Mesophyll protoplasts of two genetically distinct genotypes of N. debneyi were cultured with sustained division following a plating efficiency in excess of 50%. Fully fertile mature plants were regenerated from callus cultures derived from protoplasts. Shoots were induced in medium containing 1 mg/l 6-benzylaminopurine and 0.5 mg/I indole acetic acid. The repeatably high efficiency of protoplast culture was used to evaluate the quantitative effects of two drugs, kanamycin and trimethoprim, which effectively inhibited colony formation at concentrations of 100 and 50 �g/ml, respectively. An enhancer of DNA uptake, poly-L-ornithine, had virtually no effect on sustained protoplast division at a concentration of 7.5 �g/ml or less.


1995 ◽  
Vol 51 (1-2) ◽  
pp. 103-113 ◽  
Author(s):  
Xianggan Li ◽  
Denise M. Seliskar ◽  
Jennifer A. Moga ◽  
John L. Gallagher

2017 ◽  
Vol 37 (1) ◽  
pp. 569-576 ◽  
Author(s):  
Ambreen Gul ◽  
Muhammad Irfan ◽  
Muhammad Nadeem ◽  
Quratulain Syed ◽  
Ikram ul Haq

Sign in / Sign up

Export Citation Format

Share Document