scholarly journals Searching for an Internal Representation of Stimulus Kinematics in the Response of Ventral Paraflocculus Purkinje Cells

2017 ◽  
Vol 16 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Pablo M. Blazquez ◽  
GyuTae Kim ◽  
Tatyana A. Yakusheva
1998 ◽  
Vol 80 (2) ◽  
pp. 832-848 ◽  
Author(s):  
Yasushi Kobayashi ◽  
Kenji Kawano ◽  
Aya Takemura ◽  
Yuka Inoue ◽  
Toshihiro Kitama ◽  
...  

Kobayashi, Yasushi, Kenji Kawano, Aya Takemura, Yuka Inoue, Toshihiro Kitama, Hiroaki Gomi, and Mitsuo Kawato. Temporal firing patterns of Purkinje cells in cerebellar ventral paraflocculus during ocular following responses in monkeys. II. Complex spikes. J. Neurophysiol. 80: 832–848, 1998. Many theories of cerebellar motor learning propose that complex spikes (CS) provide essential error signals for learning and modulate parallel fiber inputs that generate simple spikes (SS). These theories, however, do not satisfactorily specify what modality is represented by CS or how information is conveyed by the ultra-low CS firing rate (1 Hz). To further examine the function of CS and the relationship between CS and SS in the cerebellum, CS and SS were recorded in the ventral paraflocculus (VPFL) of awake monkeys during ocular following responses (OFR). In addition, a new statistical method using a generalized linear model of firing probability based on a binomial distribution of the spike count was developed for analysis of the ultra-low CS firing rate. The results of the present study showed that the spatial coordinates of CS were aligned with those of SS and the speed-tuning properties of CS and SS were more linear for eye movement than retinal slip velocity, indicating that CS contain a motor component in addition to the sensory component identified in previous studies. The generalized linear model to reproduce firing probability confirmed these results, demonstrating that CS conveyed high-frequency information with its ultra-low firing frequency and conveyed both sensory and motor information. Although the temporal patterns of the CS were similar to those of the SS when the sign was reversed and magnitude was amplified ∼50 times, the velocity/acceleration coefficient ratio of the eye movement model, an aspect of the CS temporal firing profile, was less than that of the SS, suggesting that CS were more sensory in nature than SS. A cross-correlation analysis of SS that are triggered by CS revealed that short-term modulation, that is, the brief pause in SS caused by CS, does not account for the reciprocal modulation of SS and CS. The results also showed that three major aspects of the CS and SS individual cell firing characteristics were negatively correlated on a cell-to-cell basis: the preferred direction of stimulus motion, the mean percent change in firing rate induced by upward stimulus motion, and patterns of temporal firing probability. These results suggest that CS may contribute to long-term interactions between parallel and climbing fiber inputs, such as long-term depression and/or potentiation.


1998 ◽  
Vol 80 (2) ◽  
pp. 818-831 ◽  
Author(s):  
Hiroaki Gomi ◽  
Munetaka Shidara ◽  
Aya Takemura ◽  
Yuka Inoue ◽  
Kenji Kawano ◽  
...  

Gomi, Hiroaki, Munetaka Shidara, Aya Takemura, Yuka Inoue, Kenji Kawano, and Mitsuo Kawato. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys. I. Simple spikes. J. Neurophysiol. 80: 818–831, 1998. The simple-spike firing frequency of 30 Purkinje cells (P cells) in the ventral paraflocculus (VPFL) of alert monkeys was studied in relation to vertical slow eye movements, termed ocular following response (OFR), induced by large-field visual motions of different velocities and durations. To quantitatively analyze the relationship between eye movement and firing frequency, an inverse dynamics representation of the eye movement was used for reconstructing the temporal waveform of firing. Coefficients of eye-acceleration, velocity, and position, bias, and time lag between firing and eye movement were estimated by least-square error method. In the regression analyses for each stimulus condition, 86% (146/170) of the well-modulated temporal firing patterns taken from those 30 P cells were reconstructed successfully from eye movement. The model with acceleration, velocity, and position terms, which we used, was shown as the best among several potential models by Cp statistics, consistent with t-test of significance of each term. Reliable coefficients were obtained from 75% (109/146) of the well-reconstructed firing patterns of 28 cells among 30. The estimated coefficients were larger (statistically significant) for slow stimuli than for fast stimuli, suggesting changes in sensitivities under different conditions. However, firing patterns of each cell under several different conditions were frequently well reconstructed by an inverse dynamics representation with a single set of coefficients (13 cells among 21). This indicates that the relationships between P cell firing and OFR are roughly linear in those stimulus ranges. The estimated coefficients for acceleration and velocity suggested that the VPFL P cells properly encode the dynamic components of the motor command during vertical OFR. As for the positional component, however, these P cells are correlated with eye movement in the opposite direction. In the regression analysis without positional component, remarkable differences between observed and reconstructed firing patterns were noted especially in the initial phase of the movements, indicating that the negative positional component was not negligible during OFR. Thus we conclude that, during OFR, the VPFL P cells cannot provide the necessary final motor command, and other brain regions, downstream neural structures, or other types of P cells must provide lacking position-dependent motor commands. This finding about the negative correlation with the position is in the opposite sign with previous studies obtained from the fixation and the smooth pursuit movement. From these comparisons, how the VPFL contributes to a part of the final motor command or how other brain regions complement the VPFL is suggested to be different for early and late phases of the movements.


1994 ◽  
Vol 72 (2) ◽  
pp. 954-973 ◽  
Author(s):  
S. G. Lisberger ◽  
T. A. Pavelko ◽  
H. M. Bronte-Stewart ◽  
L. S. Stone

1. We made extracellular recordings from Purkinje cells in the flocculus and ventral paraflocculus of awake monkeys before and after motor learning in the vestibuloocular reflex (VOR). Three samples were recorded 1) after miniaturizing spectacles had reduced the gain of the VOR (eye speed divided by head speed) to 0.4; 2) when the gain of the VOR was near 1.0; and 3) after magnifying spectacles had increased the gain of the VOR to 1.6. 2. We studied Purkinje cells that showed stronger modulation of simple-spike firing rate during horizontal than during vertical pursuit. These cells corresponded to the previously identified “horizontal gaze velocity Purkinje cells” or HGVP-cells. During pursuit of smooth target motion with the head stationary, HGVP-cells showed strong modulation of firing rate with increases for ipsiversive eye motion (toward the side of recording). When the monkey canceled his VOR by tracking a target that moved exactly with him during sinusoidal head rotation in the horizontal plane, HGVP-cells again showed strong modulation of firing rate with increases for ipsiversive head motion. 3. The responses of HGVP-cells during pursuit with the head stationary and during cancellation of the VOR reveal separate components of firing rate related to eye and head velocity. We used these two behavioral conditions to test for effects of motor learning on the head and eye velocity components of the simple-spike firing of HGVP-cells. Our data confirm the previous observation that motor learning causes the sensitivity to head velocity to be larger when the gain of the VOR is high and smaller when the gain of the VOR is low. Thus we agree with the previous conclusion that changes in the vestibular sensitivity of HGVP-cells, measured during sinusoidal head motion at low frequencies, are in the wrong direction to cause changes in the gain of the VOR. 4. To determine whether the simple-spike output from the HGVP-cells plays a role in the VOR after motor learning, we recorded simple-spike firing during the VOR evoked by transient, rapid changes in head velocity in darkness. When the gain of the VOR was low, firing rate increased during the VOR evoked by ipsiversive head motion and decreased during the VOR evoked by contraversive head motion. When the gain of the VOR was high, the direction selectivity of the responses was reversed.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (4) ◽  
pp. 2045-2050 ◽  
Author(s):  
R. J. Krauzlis ◽  
S. G. Lisberger

1. We recorded the simple spike firing rate of gaze velocity Purkinje cells (GVP-cells) in the flocculus/ventral paraflocculus of two monkeys during the smooth pursuit eye movements evoked by a target that was initially at rest, started suddenly, moved at a constant velocity, and then stopped. 2. For target motion in the preferred direction, GVP-cells showed a large transient increase in firing rate at the onset of pursuit, a smaller but sustained increase during the maintenance of pursuit, and a smooth return to baseline firing with little undershoot at the offset of pursuit. For target motion in the nonpreferred direction, GVP-cells showed a small decrease in firing rate at the onset of pursuit, a similar sustained decrease during the maintenance of pursuit, but a large transient increase in firing rate at the offset of pursuit before returning to baseline firing. 3. We pooled the data in our sample of horizontal GVP-cells by subtracting the population average of firing rate recorded during pursuit in the nonpreferred direction from the population average recorded during pursuit in the preferred direction. We transformed this net population average by passing it through a model of the brain stem final common pathway and the oculomotor plant. This yielded a signal that closely matched the observed trajectory of eye velocity during pursuit. We conclude that the transient overshoots exhibited in the firing rate of GVP-cells can provide appropriate compensation for the lagging dynamics of the oculomotor plant.


2004 ◽  
Vol 92 (2) ◽  
pp. 797-807 ◽  
Author(s):  
T. Belton ◽  
R. A. McCrea

The vestibuloocular reflex (VOR) functions to stabilize gaze when the head moves. The flocculus region (FLR) of the cerebellar cortex, which includes the flocculus and ventral paraflocculus, plays an essential role in modifying signal processing in VOR pathways so that images of interest remain stable on the retina. In squirrel monkeys, the firing rate of most FLR Pk cells is modulated during VOR eye movements evoked by passive movement of the head. In this study, the responses of 48 FLR Purkinje cells, the firing rates of which were strongly modulated during VOR evoked by passive whole body rotation or passive head-on-trunk rotation, were compared to the responses generated during compensatory VOR eye movements evoked by the active head movements of eye-head saccades. Most (42/48) of the Purkinje cells were insensitive to eye-head saccade-related VOR eye movements. A few (6/48) generated bursts of spikes during saccade-related VOR but only during on-direction eye movements. Considered as a population FLR Pk cells were <5% as responsive to the saccade-related VOR as they were to the VOR evoked by passive head movements. The observations suggest that the FLR has little influence on signal processing in VOR pathways during eye-head saccade-related VOR eye movements. We conclude that the image-stabilizing signals generated by the FLR are highly dependent on the behavioral context and are called on primarily when external forces unrelated to self-generated eye and head movements are the cause of image instability.


Author(s):  
R.V.W. Dimlich ◽  
M.H. Biros

In severe cerebral ischemia, Purkinje cells of the cerebellum are one of the cell types most vulnerable to anoxic damage. In the partial (forebrain) global ischemic (PGI) model of the rat, Paljärvi noted at the light microscopic level that cerebellar damage is inconsistant and when present, milder than in the telencephalon, diencephalon and rostral brain stem. Cerebellar injury was observed in 3 of 4 PGI rats following 5 minutes of reperfusion but in none of the rats after 90 min of reperfusion. To evaluate a time between these two extremes (5 and 90 min), the present investigation used the PGI model to study the effects of ischemia on the ultrastructure of cerebellar Purkinje cells in rats that were sacrificed after 30 min of reperfusion. This time also was chosen because lactic acid that is thought to contribute to ischemic cell changes in PGI is at a maximum after 30 min of reperfusion.


Author(s):  
R.V.W. Dimlich ◽  
M.H. Biros

Although a previous study in this laboratory determined that Purkinje cells of the rat cerebellum did not appear to be damaged following 30 min of forebrain ischemia followed by 30 min of reperfusion, it was suggested that an increase in rough endoplasmic reticulum (RER) and/or polysomes had occurred in these cells. The primary objective of the present study was to morphometrically determine whether or not this increase had occurred. In addition, since there is substantial evidence that glial cells may be affected by ischemia earlier than other cell types, glial cells also were examined. To ascertain possible effects on other cerebellar components, granule cells and neuropil near Purkinje cells as well as neuropil in the molecular layer also were evaluated in this investigation.


Sign in / Sign up

Export Citation Format

Share Document