scholarly journals Stability, Bifurcation and Chaos Analysis of Vector-Borne Disease Model with Application to Rift Valley Fever

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e108172 ◽  
Author(s):  
Sansao A. Pedro ◽  
Shirley Abelman ◽  
Frank T. Ndjomatchoua ◽  
Rosemary Sang ◽  
Henri E. Z. Tonnang
Author(s):  
Johanna Lindahl ◽  
Bernard Bett ◽  
Timothy Robinson ◽  
Delia Grace

Rift Valley fever is a severe disease affecting both humans and animals. The Rift Valley fever virus can be transmitted by body fluids, and the most common way for humans to get infected is from animals. The virus is also vector-borne and can be transmitted by many species of mosquitoes. As with other vector-borne diseases, the epidemiology may vary in response to environmental changes. Here the effects of climate and land use changes on Rift Valley fever, as well as on other vector-borne diseases, are discussed. The effect of irrigation in East Africa on inter-epidemic transmission of RVF is discussed in greater detail, followed by recommendations for future research and actions.


Author(s):  
Johanna Lindahl ◽  
Bernard Bett ◽  
Timothy Robinson ◽  
Delia Grace

Rift Valley fever is a severe disease affecting both humans and animals. The Rift Valley fever virus can be transmitted by body fluids, and the most common way for humans to get infected is from animals. The virus is also vector-borne and can be transmitted by many species of mosquitoes. As with other vector-borne diseases, the epidemiology may vary in response to environmental changes. Here the effects of climate and land use changes on Rift Valley fever, as well as on other vector-borne diseases, are discussed. The effect of irrigation in East Africa on inter-epidemic transmission of RVF is discussed in greater detail, followed by recommendations for future research and actions.


2009 ◽  
Vol 4 (5) ◽  
pp. 322-328 ◽  
Author(s):  
Tomohiko Takasaki ◽  
◽  
Akira Kotaki ◽  
Chang-Kweng Lim ◽  
Shigeru Tajima ◽  
...  

Arthropod-borne infections carried by mosquitoes and ticks are difficult to eradicate, once rooted, and have frequently caused wide-area epidemics such as dengue fever, West Nile fever, chikungunya fever, yellow fever, Japanese encephalitis and Rift Valley fever. Factors such as global warming and overpopulation have aggravated urban epidemics caused by dengue and chikungunya viruses. Measures against arthropods have their limitations, however, so nonepidemic areas must be protected against invasion by vector-borne diseases through quarantine, education and effective vaccination.


2019 ◽  
Vol 4 (1) ◽  
pp. 52 ◽  
Author(s):  
Baratang Lubisi ◽  
Phumudzo Ndouvhada ◽  
Donald Neiffer ◽  
Mary-Louise Penrith ◽  
Donald-Ray Sibanda ◽  
...  

Rift Valley fever (RVF) is a vector-borne viral disease of ruminants mainly, and man, characterized by abortions and neonatal deaths in animals and flu-like to more severe symptoms that can result in death in humans. The disease is endemic in Africa, Saudi Arabia and Yemen, and outbreaks occur following proliferation of RVF virus (RVFV) infected mosquito vectors. Vertebrate animal maintenance hosts of RVFV, which serve as a source of virus during inter-epidemic periods remain unknown, with wild and domestic suids being largely overlooked. To address this, we evaluated the virus neutralization test (VNT) for RVF antibody detection in suid sera, as a first step in assessing the role of suids in the epidemiology of RVF in Africa. Testing of experimental and field sera from domestic pigs and warthogs with a commercial RVF competitive antibody ELISA, served as a reference standard against which the VNT results were compared. Results indicate that VNT can detect anti-RVFV antibodies within three days post-infection, has an analytical specificity of 100% and diagnostic sensitivity and specificity of 80% and 97%, respectively. Although labour-intensive and time-consuming, the VNT proved suitable for screening suid sera and plasma for presence of RVFV antibodies in viraemic and recovered animals.


Author(s):  
Thameur B. Hassine ◽  
Jihane Amdouni ◽  
Federica Monaco ◽  
Giovanni Savini ◽  
Soufien Sghaier ◽  
...  

A total of 118 sera were collected during 2016 from two groups of dromedaries from Kebili and Medenine governorates in the south of Tunisia. The aim of this study was to provide the first serological investigation of four emerging vector-borne diseases in two groups of dromedaries in Tunisia. Sera were tested by ELISA and serum neutralisation test to identify West Nile virus (WNV), bluetongue virus (BTV), epizootic haemorrhagic disease virus (EHDV) and Rift Valley fever virus (RVFV). In the first group, the seroprevalence for BTV was 4.6%, while in the second group, it was 25.8% for WNV and 9.7% for BTV. Only serotype 1 was detected for BTV in the two groups. No evidence for circulation of RVF and EHD viruses was revealed. Results indicated that dromedaries can be infected with BTV and WNV, suggesting that this species might play a significant role in the epizootiology of these viral diseases in Tunisia and neighbouring countries.


2021 ◽  
pp. 237-245
Author(s):  
Abdusalam S. Mahmoud ◽  
Osama K. Sawesi ◽  
Osama R. El-Waer ◽  
Emad M. Bennour

Rift valley fever (RVF) is an acute vector-borne viral zoonotic disease of domestic and wild ruminants. The RVF virus (RVFV) belonging to the Phlebovirus genus of the Bunyaviridae family causes this disease. Studies have shown that mosquitoes are the vectors that transmit RVFV. Specifically, Aedes and Culex mosquito species are among the many vectors of this virus, which affects not only sheep, goats, buffalo, cattle, and camels but also human beings. Since the 30s of the last century, RVF struck Africa, and to a lesser extent, Asian continents, with subsequent episodes of epizootic, epidemic, and sporadic outbreaks. These outbreaks, therefore, resulted in the cumulative loss of thousands of human lives, thereby disrupting the livestock market or only those with seropositive cases. After that outbreak episode, RVF was not reported in Libya until January 13, 2020, where it was reported for the 1st time in a flock of sheep and goats in the southern region of the country. Although insufficient evidence to support RVF clinical cases among the confirmed seropositive animals exists, neither human cases nor death were reported in Libya. Yet, the overtime expansion of RVF kinetics in the Libyan neighborhoods, in addition to the instability and security vacuum experienced in the country, lack of outbreak preparedness, and the availability of suitable climatic and disease vector factors, makes this country a possible future scene candidate for RVF expansion. Urgently, strengthening veterinary services (VS) and laboratory diagnostic capacities, including improvement of monitoring and surveillance activity programs, should be implemented in areas at risk (where imported animals crossing borders from Libyan neighborhoods and competent vectors are found) at national, sub-national, and regional levels. The Libyan government should also implement a tripartite framework (one health approach) among the veterinary public health, public health authority, and environmental sanitation sectors to implement RVF surveillance protocols, along with an active partnership with competent international bodies (OIE, FAO, and WHO). Therefore, this review comprises the most updated data regarding the epidemiological situation of RVF infections and its socioeconomic impacts on African and Asian continents, and also emphasize the emerging interest of RVF in Libya.


Sign in / Sign up

Export Citation Format

Share Document