Dynamic changes in carbohydrate metabolism and endogenous hormones during Tulipa edulis stolon development into a new bulb

2016 ◽  
Vol 59 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Yuanyuan Miao ◽  
Zaibiao Zhu ◽  
Qiaosheng Guo ◽  
Xiaohua Yang ◽  
Li Liu ◽  
...  
HortScience ◽  
2021 ◽  
pp. 1-5
Author(s):  
Shuming Ju ◽  
Lingzhen Ji ◽  
Delan Xu

Endogenous hormones can improve plant resistance and regulate growth and development. To obtain the basis of chemical control technology for improving Sequoia sempervirens resistance in Xuzhou, China, the current study probed the dynamic changes of endogenous hormones in terminal buds from different crown positions in S. sempervirens. Enzyme-linked immunosorbent assay (ELISA) was used to measure changes in the contents of endogenous hormones in terminal buds from the upper, middle, and lower lateral branches. The results were as follows: Indole acetic acid (IAA) in all terminal positions had a similar change trend of “rise–drop–rise.” Gibberellic acid (GA) in the upper and middle terminal buds showed similar trends of “drop–rise,” but GA in the lower lateral branches presented a “rise–drop” trend. Zeatin–riboside (ZR) in all terminal positions had similar change trends of “drop–rise.” Abscisic acid (ABA) in all terminal positions had similar change trends of “drop–rise–drop.” the trend of (IAA + GA + ZR)/ABA in all terminal positions was the same as that of IAA. Our results confirmed that, in autumn, the high content and ratio of stimulatory endogenous hormones in the terminal bud of S. sempervirens induced the terminal bud cells to continue to divide and grow, and the new branches could not be fully lignified and deeply dormant before the onset of low temperatures in winter, which led to a decrease in cold resistance and even the death of the terminal buds.


2016 ◽  
Vol 141 (3) ◽  
pp. 211-221 ◽  
Author(s):  
Yuanyuan Miao ◽  
Qiaosheng Guo ◽  
Zaibiao Zhu ◽  
Xiaohua Yang ◽  
Changlin Wang ◽  
...  

The stolon is the main asexual reproductive organ of the medicinal plant Tulipa edulis and has special morphology. In the greenhouse experiment presented herein, the dynamic changes in carbohydrates and related enzymes, proteins, and endogenous hormones of stolons during T. edulis stolon formation were investigated. The results showed that the content of total soluble sugar, sucrose, reducing sugar, fructose, and starch were all significantly enhanced in the middle period when stolon emerged and maintained at relatively high levels until the later period of stolon formation, while protein content decreased during stolon formation. The activities of amylase (AMY), sucrose phosphate synthase (SPS), and sucrose synthase (SS) peaked in the initial period and were negatively correlated with soluble sugars. However, adenosine diphosphoglucose pyrophosphorylase (AGPase) activity increased as stolon formation progressed, and the changes in soluble starch synthase (SSS), granule-bound starch synthase (GBSS) activities presented a single peak, reaching their maximums in the middle period. AGPase, SSS, and GBSS activities were all positively related to starch content. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) verified the changes in SS and SSS activities via the expression levels of the SS, SSSI, and SSSII genes. The gibberellin (GA) and zeatin riboside (ZR) content attained their maximum in the initial period of stolon formation. Indole-3-acetic acid (IAA) and abscisic acid (ABA) remained at high levels during the initial and middle period and decreased significantly during the later period of stolon formation, inversely to the ratio of ABA:IAA. Analysis of the physiological changes in T. edulis stolon indicated that the accumulation of soluble sugars and starch via various enzymes, a high level of IAA and a low ABA to IAA ratio mainly contributed to stolon development of T. edulis. This paper explored carbohydrate levels and endogenous hormones profiles during stolon formation, which provided the theory basis for further regulating stolon growth of T. edulis.


Author(s):  
T. M. Murad ◽  
Karen Israel ◽  
Jack C. Geer

Adrenal steroids are normally synthesized from acetyl coenzyme A via cholesterol. Cholesterol is also shown to enter the adrenal gland and to be localized in the lipid droplets of the adrenal cortical cells. Both pregnenolone and progesterone act as intermediates in the conversion of cholesterol into steroid hormones. During pregnancy an increased level of plasma cholesterol is known to be associated with an increase of the adrenal corticoid and progesterone. The present study is designed to demonstrate whether the adrenal cortical cells show any dynamic changes during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document