Numerical investigation for anisotropy of compressive strength of rock mass with multiple natural joints

2010 ◽  
Vol 16 (3) ◽  
pp. 246-248
Author(s):  
Feng-shan Han ◽  
Chun-an Tang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satar Mahdevari ◽  
Mohammad Hayati

AbstractDesigning a suitable support system is of great importance in longwall mining to ensure the safe and stable working conditions over the entire life of the mine. In high-speed mechanized longwall mining, the most vulnerable zones to failure are roof strata in the vicinity of the tailgate roadway and T-junctions. Severe roof displacements are occurred in the tailgate roadway due to the high-stress concentrations around the exposed roof span. In this respect, Response Surface Methodology (RSM) was utilized to optimize tailgate support systems in the Tabas longwall coal mine, northeast of Iran. The nine geomechanical parameters were obtained through the field and laboratory studies including density, uniaxial compressive strength, angle of internal friction, cohesion, shear strength, tensile strength, Young’s modulus, slake durability index, and rock mass rating. A design of experiment was developed through considering a Central Composite Design (CCD) on the independent variables. The 149 experiments are resulted based on the output of CCD, and were introduced to a software package of finite difference numerical method to calculate the maximum roof displacements (dmax) in each experiment as the response of design. Therefore, the geomechanical variables are merged and consolidated into a modified quadratic equation for prediction of the dmax. The proposed model was executed in four approaches of linear, two-factor interaction, quadratic, and cubic. The best squared correlation coefficient was obtained as 0.96. The prediction capability of the model was examined by testing on some unseen real data that were monitored at the mine. The proposed model appears to give a high goodness of fit with the accuracy of 0.90. These results indicate the accuracy and reliability of the developed model, which may be considered as a reliable tool for optimizing or redesigning the support systems in longwall tailgates. Analysis of variance (ANOVA) was performed to identify the key variables affecting the dmax, and to recognize their pairwise interaction effects. The key parameters influencing the dmax are respectively found to be slake durability index, Young’s modulus, uniaxial compressive strength, and rock mass rating.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


2013 ◽  
Vol 19 (7) ◽  
pp. 1964-1968
Author(s):  
Dongping L ◽  
Jun Li ◽  
Yangjian Xu ◽  
Wei Wei

2014 ◽  
Vol 670-671 ◽  
pp. 668-673
Author(s):  
Jiang Feng Ma ◽  
Xiu Li Zhang ◽  
Yu Yong Jiao ◽  
Hu Nan Tian

A three-dimensional numerical model of the rock mass including ore body is established by FLAC3D software, and then the surface subsidence caused by backfilling under different roof thicknesses of mining stope (the vertical distance between upper mining limit and surface) are calculated and analyzed. By comparing the surface displacement, the stress distribution, and the damage zone under different conditions, the minimum roof thickness is determined.


Sign in / Sign up

Export Citation Format

Share Document