scholarly journals Finite-difference based response surface methodology to optimize tailgate support systems in longwall coal mining

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satar Mahdevari ◽  
Mohammad Hayati

AbstractDesigning a suitable support system is of great importance in longwall mining to ensure the safe and stable working conditions over the entire life of the mine. In high-speed mechanized longwall mining, the most vulnerable zones to failure are roof strata in the vicinity of the tailgate roadway and T-junctions. Severe roof displacements are occurred in the tailgate roadway due to the high-stress concentrations around the exposed roof span. In this respect, Response Surface Methodology (RSM) was utilized to optimize tailgate support systems in the Tabas longwall coal mine, northeast of Iran. The nine geomechanical parameters were obtained through the field and laboratory studies including density, uniaxial compressive strength, angle of internal friction, cohesion, shear strength, tensile strength, Young’s modulus, slake durability index, and rock mass rating. A design of experiment was developed through considering a Central Composite Design (CCD) on the independent variables. The 149 experiments are resulted based on the output of CCD, and were introduced to a software package of finite difference numerical method to calculate the maximum roof displacements (dmax) in each experiment as the response of design. Therefore, the geomechanical variables are merged and consolidated into a modified quadratic equation for prediction of the dmax. The proposed model was executed in four approaches of linear, two-factor interaction, quadratic, and cubic. The best squared correlation coefficient was obtained as 0.96. The prediction capability of the model was examined by testing on some unseen real data that were monitored at the mine. The proposed model appears to give a high goodness of fit with the accuracy of 0.90. These results indicate the accuracy and reliability of the developed model, which may be considered as a reliable tool for optimizing or redesigning the support systems in longwall tailgates. Analysis of variance (ANOVA) was performed to identify the key variables affecting the dmax, and to recognize their pairwise interaction effects. The key parameters influencing the dmax are respectively found to be slake durability index, Young’s modulus, uniaxial compressive strength, and rock mass rating.

EKSPLORIUM ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 17 ◽  
Author(s):  
Heri Syaeful ◽  
Dhatu Kamajati

Karakterisasi massa batuan diperlukan dalam suatu rancangan bukaan batuan, dimana perhitungan sifat-sifat teknis dari massa batuan menjadi hal yang penting untuk diperhatikan. Sektor Lemajung merupakan salah satu area prospek untuk penambangan uranium di Kalan, Kalimantan Barat. Tujuan penelitian adalah mendapatkan data karakteristik massa batuan yang merupakan data dasar bagi perencanaan pengembangan teknik penambangan cebakan bahan galian. Metodologi yang digunakan adalah dengan pengambilan contoh batuan untuk analisis laboratorium mekanika batuan, pengamatan rekahan, dan pengamatan kondisi airtanah. Parameter batuan yang dianalisis meliputi uniaxial compressive strength (UCS), rock quality designation (RQD), jarak rekahan, kondisi rekahan, dan airtanah. Hasil analisis menyimpulkan bahwa metalanau sebagai litologi yang mengandung uranium di Sektor Lemajung mempunyai nilai rock mass rating (RMR) sebesar 56 atau kelas massa batuan III: fair rock pada kedalaman sekitar 60 m, dan pada kedalaman 280 m nilai RMR mencapai 82 atau kelas massa batuan I: very good rock. Data nilai RMR tersebut selanjutnya dapat digunakan dalam analisis pembuatan terowongan pada model tambang bawah tanah atau analisis kestabilan lereng pada model tambang terbuka. Rock mass characterization is required in design of rock opening, which calculation of engineering characters of rock mass become one important parameter toconsider. Lemajung sector is one of prospect area for uranium mining in Kalan, West Kalimantan. Purpose of research is to acquire rock mass characteristicsas basic data for planning the development of mining technique of ore deposit. Methodology applied is rock sampling for rock mechanic laboratory analysis, observation of joints, and observation of groundwater condition. Rock parameters analyzed includes uniaxial compressive strength (UCS), rock quality designation (RQD), joint spacing, joint condition, and groundwater. Analysis concluded that metasiltstonewhich is lithology contained uranium in Lemajung Sector has rock mass rating (RMR) value of 56 or rock mass class III: fair rock in the depth of around 60 m, and in the depth of 280 m RMR value reach 82 or rock mass class I: very good rock. RMR value data furthermore could be used for analysis of tunneling in the model of underground mine or slope stability analysis in the model of open pit mine.


Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


Sign in / Sign up

Export Citation Format

Share Document