scholarly journals Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance

2019 ◽  
Vol 27 (6) ◽  
pp. 304-309 ◽  
Author(s):  
F. H. M. van Lint ◽  
O. R. F. Mook ◽  
M. Alders ◽  
H. Bikker ◽  
R. H. Lekanne dit Deprez ◽  
...  

2019 ◽  
Vol 27 (6) ◽  
pp. 299-303 ◽  
Author(s):  
I. Christiaans ◽  
O. R. F. Mook ◽  
M. Alders ◽  
H. Bikker ◽  
R. H. Lekanne dit Deprez


2019 ◽  
Vol 2 ◽  
pp. 251581631988163 ◽  
Author(s):  
Neven Maksemous ◽  
Robert A Smith ◽  
Heidi G Sutherland ◽  
Bridget H Maher ◽  
Omar Ibrahim ◽  
...  

Objective: Hemiplegic migraine in both familial (FHM) and sporadic (SHM) forms is a rare subtype of migraine with aura that can be traced to mutations in the CACNA1A, ATP1A2 and SCN1A genes. It is characterised by severe attacks of typical migraine accompanied by hemiparesis, as well as episodes of complex aura that vary significantly between individuals. Methods: Using a targeted next generation sequencing (NGS) multigene panel, we have sequenced the genomic DNA of 172 suspected hemiplegic migraine cases, in whom no mutation had previously been found by Sanger sequencing (SS) of a limited number of exons with high mutation frequency in FHM genes. Results: Genetic screening identified 29 variants, 10 of which were novel, in 35 cases in the three FHM genes ( CACNA1A, ATP1A2 and SCN1A). Interestingly, in this suspected HM cohort, the ATP1A2 gene harboured the highest number of variants with 24/35 cases (68.6%), while CACNA1A ranked the second gene, with 5 variants identified in 7/35 cases (20%). All detected variants were confirmed by SS and were absent in 100 non-migraine healthy control individuals. Assessment of variants with the American College of Medical Genetics and Genomics guidelines classified 8 variants as pathogenic, 3 as likely pathogenic and 18 as variants of unknown significance. Targeted NGS gene panel increased the diagnostic yield by fourfold over iterative SS in our diagnostics facility. Conclusion: We have identified 29 potentially causative variants in an Australian and New Zealand cohort of suspected HM cases and found that the ATP1A2 gene was the most commonly mutated gene. Our results suggest that screening using NGS multigene panels to investigate ATP1A2 alongside CACNA1A and SCN1A is a clinically useful and efficient method.



2014 ◽  
Vol 64 (23) ◽  
pp. 2498-2506 ◽  
Author(s):  
Gillian M. Blue ◽  
Edwin P. Kirk ◽  
Eleni Giannoulatou ◽  
Sally L. Dunwoodie ◽  
Joshua W.K. Ho ◽  
...  


Author(s):  
Fang Zhao ◽  
David S. Bosler ◽  
James R. Cook

Context.— Next-generation sequencing studies are increasingly used in the evaluation of suspected chronic myeloid neoplasms (CMNs), but there is wide variability among laboratories in the genes analyzed for this purpose. Recently, the Association for Molecular Pathology CMN working group recommended a core 34-gene set as a minimum target list for evaluation of CMNs. This list was recommended based on literature review, and its diagnostic yield in clinical practice is unknown. Objective.— To determine the diagnostic yield of the core 34 genes and assess the potential impact of including selected additional genes. Design.— We retrospectively reviewed 185 patients with known or suspected CMNs tested using a 62-gene next-generation sequencing panel that included all 34 core genes. Results.— The Association for Molecular Pathology's core 34 genes had a diagnostic yield of 158 of 185 (85.4%) to detect at least 1 variant with strong/potential clinical significance and 107 of 185 (57.8%) to detect at least 2 such variants. The 62-gene panel had a diagnostic yield of 160 of 185 (86.5%) and 112 of 185 (60.5%), respectively. Variants of unknown significance were identified in 49 of 185 (26.5%) using the core 34 genes versus 76 of 185 (41.1%) using the 62-gene panel. Conclusions.— This study demonstrates that the Association for Molecular Pathology–recommended core 34-gene set has a high diagnostic yield in CMNs. Inclusion of selected additional genes slightly increases the rate of abnormal results, while also increasing the detection of variants of unknown significance. We recommend inclusion of CUX1, DDX41, ETNK1, RIT1, and SUZ12 in addition to the Association for Molecular Pathology's 34-gene core set for routine evaluation of CMNs.



Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1364 ◽  
Author(s):  
Diego Carbonell ◽  
Julia Suárez-González ◽  
María Chicano ◽  
Cristina Andrés-Zayas ◽  
Juan Carlos Triviño ◽  
...  

Molecular diagnosis of myeloid neoplasms (MN) is based on the detection of multiple genetic alterations using various techniques. Next-generation sequencing (NGS) has been proved as a useful method for analyzing many genes simultaneously. In this context, we analyzed diagnostic samples from 121 patients affected by MN and ten relapse samples from a subset of acute myeloid leukemia patients using two enrichment-capture NGS gene panels. Pathogenicity classification of variants was enhanced by the development and application of a custom onco-hematology score. A total of 278 pathogenic variants were detected in 84% of patients. For structural alterations, 82% of those identified by cytogenetics were detected by NGS, 25 of 31 copy number variants and three out of three translocations. The detection of variants using NGS changed the diagnosis of seven patients and the prognosis of 15 patients and enabled us to identify 44 suitable candidates for clinical trials. Regarding AML, six of the ten relapsed patients lost or gained variants, comparing with diagnostic samples. In conclusion, the use of NGS panels in MN improves genetic characterization of the disease compared with conventional methods, thus demonstrating its potential clinical utility in routine clinical testing. This approach leads to better-adjusted treatments for each patient.



2019 ◽  
Vol 5 (5) ◽  
pp. e352 ◽  
Author(s):  
Anna Rubegni ◽  
Alessandro Malandrini ◽  
Claudia Dosi ◽  
Guja Astrea ◽  
Jacopo Baldacci ◽  
...  

ObjectiveNext-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition.MethodsSixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies.ResultsA molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%. Variants of unknown significance were found in 17 patients (26%), whereas 16 cases (24%) remained molecularly undefined. The major features of the diagnosed cases were mild proximal muscle weakness (found in 27%) and myalgia (in 24%). Fourteen patients with a molecular diagnosis and mild myopathic features on muscle biopsy remained asymptomatic at a 24-month follow-up.ConclusionsThis study of patients with undiagnosed hyperCKemia, highlighting the advantages of NGS used as a first-tier diagnostic approach in genetically heterogeneous conditions, illustrates the ongoing evolution of molecular diagnosis in the field of clinical neurology. Isolated hyperCKemia can be the sole feature alerting to a progressive muscular disorder requiring careful surveillance.



2019 ◽  
Vol 153 (5) ◽  
pp. 639-645 ◽  
Author(s):  
Victoria Northrup ◽  
Allison Maybank ◽  
Nancy Carson ◽  
Tarek Rahmeh

Abstract Objectives The implementation of next-generation sequencing (NGS) in routine clinical hematology practice remains limited. We evaluate the clinical value of NGS in the screening, diagnosis, and follow-up in hematologic neoplasms. Methods A targeted NGS panel was used to assess a total of 178 patients for questionable or previously diagnosed myeloid neoplasms. Results Gene variants were identified in 53% of patients. Novel variants were identified in 29% of patients and variants of unknown significance in 34%. Bone marrow samples yielded a higher number of variants than in peripheral blood. NGS is a more sensitive test than conventional cytogenetics. In several cases, NGS played a key role in the screening, diagnostics, prognostic stratification, and the clinical follow-up of a wide variety of myeloid neoplasms. Conclusions NGS is an effective tool in the evaluation of suspected and confirmed hematologic neoplasms and could become part of the routine workup of patients.



2021 ◽  
Vol 8 (1) ◽  
pp. 19-24
Author(s):  
Sinem Yalcintepe ◽  
Hakan Gurkan ◽  
Fatma Nur Korkmaz ◽  
Selma Demir ◽  
Engin Atli ◽  
...  

The aim of this study was to evaluate germline variant frequencies of pheochromocytoma and paraganglioma targeted susceptibility genes with next-generation sequencing method. Germline DNA from 75 cases were evaluated with targeted next-generation sequencing on an Illumina NextSeq550 instrument. KIF1B, RET, SDHB, SDHD, TMEM127, and VHL genes were included in the study, and Sanger sequencing was used for verifying the variants. The pathogenic/likely pathogenic variants were in the VHL, RET, SDHB, and SDHD genes, and the diagnosis rate was 24% in this study. Three different novel pathogenic variants were determined in five cases. This is the first study from Turkey, evaluating germline susceptibility genes of pheochromocytoma and paraganglioma with a detection rate of 24% and three novel variants. All patients with pheochromocytoma and paraganglioma need clinical genetic testing with expanded targeted gene panels for higher diagnosis rates.





2020 ◽  
Author(s):  
Eva-Katharina Willimsky ◽  
Anna Munzig ◽  
Karin Mayer ◽  
Saskia Biskup ◽  
Angela Abicht ◽  
...  

Abstract Introduction Next generation sequencing (NGS) with customized gene panels is a helpful tool to identify monogenic epilepsy syndromes. The number of genes tested within a customized panel may vary greatly. The aim of the present study was to compare the diagnostic yield of small (<25 kb) and large (>25 kb) customized epilepsy panels. Methods This retrospective cohort study investigated data of 190 patients of 18 years or younger, with the diagnosis of an epilepsy of unknown etiology who underwent NGS using customized gene panels. Small (<25 kb) and large (>25 kb) panels were compared regarding the distribution of benign/likely benign and pathogenic/likely pathogenic variants and variants of unclear significance. In addition, differences of the diagnostic yield with respect to epilepsy severity, i.e., developmental and epileptic encephalopathy [DEE] vs. non-DEE, were analyzed. Results The diagnostic yield defined as pathogenic or likely pathogenic variants in large panels was significantly increased (29% [n = 14/48] vs. 13% [n = 18/142], p = 0.0198) compared with smaller panels. In non-DEE patients the increase of the diagnostic yield in large panels was significant(35% n = 6/17 vs. 13% n = 12/94, p = 0.0378), which was not true for DEE patients. Discussion This study indicates that large panels are superior for pediatric patients with epilepsy forms without encephalopathy (non-DEE). For patients suffering from DEE small panels of a maximum of 10 genes seem to be sufficient. The proportion of unclear findings increases with rising panel sizes. Conclusion Customized epilepsy panels of >25 kb compared with smaller panels show a significant higher diagnostic yield in patients with epilepsy especially in non-DEE patients.



Sign in / Sign up

Export Citation Format

Share Document