scholarly journals Next Generation Sequencing in Pediatric Epilepsy Using Customized Panels: Size Matters

2020 ◽  
Author(s):  
Eva-Katharina Willimsky ◽  
Anna Munzig ◽  
Karin Mayer ◽  
Saskia Biskup ◽  
Angela Abicht ◽  
...  

Abstract Introduction Next generation sequencing (NGS) with customized gene panels is a helpful tool to identify monogenic epilepsy syndromes. The number of genes tested within a customized panel may vary greatly. The aim of the present study was to compare the diagnostic yield of small (<25 kb) and large (>25 kb) customized epilepsy panels. Methods This retrospective cohort study investigated data of 190 patients of 18 years or younger, with the diagnosis of an epilepsy of unknown etiology who underwent NGS using customized gene panels. Small (<25 kb) and large (>25 kb) panels were compared regarding the distribution of benign/likely benign and pathogenic/likely pathogenic variants and variants of unclear significance. In addition, differences of the diagnostic yield with respect to epilepsy severity, i.e., developmental and epileptic encephalopathy [DEE] vs. non-DEE, were analyzed. Results The diagnostic yield defined as pathogenic or likely pathogenic variants in large panels was significantly increased (29% [n = 14/48] vs. 13% [n = 18/142], p = 0.0198) compared with smaller panels. In non-DEE patients the increase of the diagnostic yield in large panels was significant(35% n = 6/17 vs. 13% n = 12/94, p = 0.0378), which was not true for DEE patients. Discussion This study indicates that large panels are superior for pediatric patients with epilepsy forms without encephalopathy (non-DEE). For patients suffering from DEE small panels of a maximum of 10 genes seem to be sufficient. The proportion of unclear findings increases with rising panel sizes. Conclusion Customized epilepsy panels of >25 kb compared with smaller panels show a significant higher diagnostic yield in patients with epilepsy especially in non-DEE patients.

2021 ◽  
pp. 1-11
Author(s):  
Montse Pauta ◽  
Berta Campos ◽  
Maria Segura-Puimedon ◽  
Gemma Arca ◽  
Alfons Nadal ◽  
...  

<b><i>Objective:</i></b> The aim of the study was to assess the diagnostic yield of 2 different next-generation sequencing (NGS) approaches: gene panel and “solo” clinical exome sequencing (solo-CES), in fetuses with structural anomalies and normal chromosomal microarray analysis (CMA), in the absence of a known familial mutation. <b><i>Methodology:</i></b> Gene panels encompassing from 2 to 140 genes, were applied mainly in persistent nuchal fold/fetal hydrops and in large hyperechogenic kidneys. Solo-CES, which entails sequencing the fetus alone and only interpreting the Online Mendelian Inheritance in Man genes, was performed in multisystem or recurrent structural anomalies. <b><i>Results:</i></b> During the study period (2015–2020), 153 NGS studies were performed in 148 structurally abnormal fetuses with a normal CMA. The overall diagnostic yield accounted for 35% (53/153) of samples and 36% (53/148) of the fetuses. Diagnostic yield with the gene panels was 31% (15/49), similar to 37% (38/104) in solo-CES. <b><i>Conclusions:</i></b> A monogenic disease was established as the underlying cause in 35% of selected fetal structural anomalies by gene panels and solo-CES.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1364 ◽  
Author(s):  
Diego Carbonell ◽  
Julia Suárez-González ◽  
María Chicano ◽  
Cristina Andrés-Zayas ◽  
Juan Carlos Triviño ◽  
...  

Molecular diagnosis of myeloid neoplasms (MN) is based on the detection of multiple genetic alterations using various techniques. Next-generation sequencing (NGS) has been proved as a useful method for analyzing many genes simultaneously. In this context, we analyzed diagnostic samples from 121 patients affected by MN and ten relapse samples from a subset of acute myeloid leukemia patients using two enrichment-capture NGS gene panels. Pathogenicity classification of variants was enhanced by the development and application of a custom onco-hematology score. A total of 278 pathogenic variants were detected in 84% of patients. For structural alterations, 82% of those identified by cytogenetics were detected by NGS, 25 of 31 copy number variants and three out of three translocations. The detection of variants using NGS changed the diagnosis of seven patients and the prognosis of 15 patients and enabled us to identify 44 suitable candidates for clinical trials. Regarding AML, six of the ten relapsed patients lost or gained variants, comparing with diagnostic samples. In conclusion, the use of NGS panels in MN improves genetic characterization of the disease compared with conventional methods, thus demonstrating its potential clinical utility in routine clinical testing. This approach leads to better-adjusted treatments for each patient.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-24
Author(s):  
Sinem Yalcintepe ◽  
Hakan Gurkan ◽  
Fatma Nur Korkmaz ◽  
Selma Demir ◽  
Engin Atli ◽  
...  

The aim of this study was to evaluate germline variant frequencies of pheochromocytoma and paraganglioma targeted susceptibility genes with next-generation sequencing method. Germline DNA from 75 cases were evaluated with targeted next-generation sequencing on an Illumina NextSeq550 instrument. KIF1B, RET, SDHB, SDHD, TMEM127, and VHL genes were included in the study, and Sanger sequencing was used for verifying the variants. The pathogenic/likely pathogenic variants were in the VHL, RET, SDHB, and SDHD genes, and the diagnosis rate was 24% in this study. Three different novel pathogenic variants were determined in five cases. This is the first study from Turkey, evaluating germline susceptibility genes of pheochromocytoma and paraganglioma with a detection rate of 24% and three novel variants. All patients with pheochromocytoma and paraganglioma need clinical genetic testing with expanded targeted gene panels for higher diagnosis rates.


Author(s):  
Mohamed Z. Alimohamed ◽  
LennartF. Johansson ◽  
Anna Posafalvi ◽  
Ludolf G. Boven ◽  
Krista K. van Dijk ◽  
...  

2016 ◽  
Vol 54 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Francisco Martínez ◽  
Alfonso Caro-Llopis ◽  
Mónica Roselló ◽  
Silvestre Oltra ◽  
Sonia Mayo ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1716
Author(s):  
Dániel Cadar ◽  
Kurt A. Jellinger ◽  
Peter Riederer ◽  
Sabrina Strobel ◽  
Camelia-Maria Monoranu ◽  
...  

Postencephalitic parkinsonism (PEP) is a disease of unknown etiology and pathophysiology following encephalitis lethargica (EL), an acute-onset polioencephalitis of cryptic cause in the 1920s. PEP is a tauopathy with multisystem neuronal loss and gliosis, clinically characterized by bradykinesia, rigidity, rest tremor, and oculogyric crises. Though a viral cause of EL is likely, past polymerase chain reaction-based investigations in the etiology of both PEP and EL were negative. PEP might be caused directly by an unknown viral pathogen or the consequence of a post-infectious immunopathology. The development of metagenomic next-generation sequencing in conjunction with bioinformatic techniques has generated a broad-range tool for the detection of unknown pathogens in the recent past. Retrospective identification and characterization of pathogens responsible for past infectious diseases can be successfully performed with formalin-fixed paraffin-embedded (FFPE) tissue samples. In this study, we analyzed 24 FFPE brain samples from six patients with PEP by unbiased metagenomic next-generation sequencing. Our results show that no evidence for the presence of a specific or putative (novel) viral pathogen was found, suggesting a likely post-infectious immune-mediated etiology of PEP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vincenza Precone ◽  
Rossella Cannarella ◽  
Stefano Paolacci ◽  
Gian Maria Busetto ◽  
Tommaso Beccari ◽  
...  

BackgroundInfertility affects about 7% of the general male population. The underlying cause of male infertility is undefined in about 50% of cases (idiopathic infertility). The number of genes involved in human spermatogenesis is over two thousand. Therefore, it is essential to analyze a large number of genes that may be involved in male infertility. This study aimed to test idiopathic male infertile patients negative for a validated panel of “diagnostic” genes, for a wide panel of genes that we have defined as “pre-diagnostic.”MethodsWe developed a next-generation sequencing (NGS) gene panel including 65 pre-diagnostic genes that were used in 12 patients who were negative to a diagnostic genetic test for male infertility disorders, including primary spermatogenic failure and central hypogonadism, consisting of 110 genes.ResultsAfter NGS sequencing, variants in pre-diagnostic genes were identified in 10/12 patients who were negative to a diagnostic test for primary spermatogenic failure (n = 9) or central hypogonadism (n = 1) due to mutations of single genes. Two pathogenic variants of DNAH5 and CFTR genes and three uncertain significance variants of DNAI1, DNAH11, and CCDC40 genes were found. Moreover, three variants with high impact were found in AMELY, CATSPER 2, and ADCY10 genes.ConclusionThis study suggests that searching for pre-diagnostic genes may be of relevance to find the cause of infertility in patients with apparently idiopathic primary spermatogenic failure due to mutations of single genes and central hypogonadism.


Sign in / Sign up

Export Citation Format

Share Document