Evaluation of urban growth and land use transformation in Riyadh using Landsat satellite data

2018 ◽  
Vol 11 (18) ◽  
Author(s):  
M. Shakir Khan ◽  
Mohammad Suhail ◽  
T. Alharbi
Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 17
Author(s):  
Garima Nautiyal ◽  
Sandeep Maithani ◽  
Ashutosh Bhardwaj ◽  
Archana Sharma

Relative Entropy (RE) is defined as the measure of the degree of randomness of any geographical variable (i.e., urban growth). It is an effective indicator to evaluate the patterns of urban growth, whether compact or dispersed. In the present study, RE has been used to evaluate the urban growth of Dehradun city. Dehradun, the capital of Uttarakhand, is situated in the foothills of the Himalayas and has undergone rapid urbanization. Landsat satellite data for the years 2000, 2010 and 2019 have been used in the study. Built-up cover outside municipal limits and within municipal limits was classified for the given time period. The road network and city center of the study area were also delineated using satellite data. RE was calculated for the periods 2000–2010 and 2010–2019 with respect to the road network and city center. High values of RE indicate higher levels of urban sprawl, whereas lower values indicate compactness. The urban growth pattern over a period of 19 years was examined with the help of RE.


2007 ◽  
Vol 26 (4) ◽  
pp. 247-264
Author(s):  
Elna Van Niekerk

Since the initiation in 1960 of the era of satellite remote sensing to detect the different characteristics of the earth, a powerful tool was created to aid researchers. Many land-use studies were undertaken using Landsat MSS, Landsat TM and ETM, as well as SPOT satellite data. The application of these data to the mapping of land use and land cover at smaller scales was constrained by the limited spectral and/or spatial resolution of the data provided by these satellite sensors. In view of the relatively high cost of SPOT data, and uncertainty regarding the future continuation of the Landsat series, alternative data sources need to be investigated. In the absence of published previous research on this issue in South Africa, the purpose of this article is to investigate the value of visual interpretation of ASTER satellite images for the identification and mapping of land-use in an area in South Africa. The study area is situated in Mpumalanga, in the area of Witbank, around the Witbank and Doorndraai dams. This area is characterised by a variety of urban, rural and industrial land uses. Digital image processing of one Landsat 5 TM, one Landsat 7 ETM and one ASTER satellite image was undertaken, including atmospheric correction and georeferencing, natural colour composites, photo infrared colour composites (or false colour satellite images), band ratios, Normalised Difference Indices, as well as the Brightness, Greenness and Wetness Indices. The efficacy with which land use could be identified through the visual interpretation of the processed Landsat 5 TM, Landsat 7 TM and ASTER satellite images was compared. The published 1:50 000 topographical maps of the area were used for the purpose of initial verification. Findings of the visual interpretation process were verified by field visits to the study area. The study found that the ASTER satellite data produced clearer results and therefore have a higher mapping ability and capacity than the Landsat satellite data. Hence, it is anticipated that the use of the full range of the spectral resolution of the ASTER satellite data – which were not available for this study – in statistical pattern recognition and classification methods will enhance the value of the process. Statistical methods are often used to produce visual information which could be applied to prepare land-use change inventories. This should be addressed in future research projects. Should the Landsat programme be terminated, ASTER satellite data might provide the best alternative for a variety of research projects, but if the Landsat project is continued, the ASTER satellite data could be used very effectively in conjunction with the Landsat satellite data. Since it is foreseen that the ASTER satellite data will be available for at least the next 12 to 15 years, it will continue to provide exciting possibilities for the development of programmes to monitor land-use and land-use change. This could then be used by all three levels of government to reach their goals in terms of agricultural planning, town and regional planning and environmental management. These requirements are described in the Integrated Development Programmes (IDP) of the different local governments.


2020 ◽  
Vol 8 (6) ◽  
pp. 5119-5125

Urban growth of Chennai district is exponential and heading towards extreme urbanisation. Hence this necessitates the study of urban growth in Chennai district. The recent advancement in Remote sensing and GIS has an excellent ability to derive various data from the satellite images obtained .This helps us to map, monitor and picturise various aspects of development with respect to their demands. The basic principle of remote sensing is followed as the methodology. By following the methodology correctly and by proper processing of the data acquired from the satellite images, the exact requirements of information can be obtained. The Change in the urban growth of the Chennai district for three decades from 1989 to 2019 have been found by using remote sensing and GIS techniques. The satellite images of various years are obtained from Landsat satellite from the USGS Earth Explorer .The Land use characteristics of Chennai district of each year can be obtained by preparing the land use land cover map of Chennai district by the use of landsat satellite images. The two software namely ArcGIS and ERDAS Imagine are used to create the Land use land cover map. From the Land use land cover map of Chennai district, the change detection and statistical analysis of three decades are done and these analysis clearly shows that the urban growth of Chennai district is constantly increasing and there is a huge decrease in other natural features such as vegetation, water body and barren land. By performing urban trend analysis the urban growth of Chennai district for the upcoming years are predicted to prove the urban agglomeration in Chennai district.


Author(s):  
M. Ahmadlou ◽  
M. R. Delavar ◽  
H. Shafizadeh-Moghadam ◽  
A. Tayyebi

The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML) approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR) model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC) and total operating characteristics (TOC), by overlaying the map of observed change and the modeled suitability map for land use change (error map). The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.


Sign in / Sign up

Export Citation Format

Share Document