Geochemistry and zircon U–Pb geochronology constrains late cretaceous plagiogranite intrusions in Mersin ophiolite complex (southern Turkey).

2018 ◽  
Vol 11 (23) ◽  
Author(s):  
Nusret Nurlu ◽  
Sedat Türkmen ◽  
Gökçe Şimşek ◽  
Aleksandr S. Stepanov
1994 ◽  
Vol 31 (5) ◽  
pp. 824-834 ◽  
Author(s):  
Mohsen Arvin ◽  
Paul T. Robinson

A Late Cretaceous ophiolite complex in the Baft area, southwest of Kerman, Iran, is characteristic of the Central Iranian Ophiolitic Mélange Belt, which wraps around the Lut Block. Despite the extensive tectonic disruption of the Baft complex, most ophiolitic lithologies are present and many original igneous contacts are preserved. A lack of cumulate gabbros within the sequence suggests that a large and continuous magma chamber did not exist beneath the Baft spreading axis. Geochemical data confirm the presence of two distinct compositional groups in the mafic lavas: (1) tholeiitic basalt and (2) transitional tholeiitic basalt. The tholeiitic lavas are similar to typical mid-ocean-ridge basalt compositions, whereas the transitional tholeiites are similar to intraplate basalts. The available data suggest that the Baft ophiolite complex formed in a small ocean basin, possibly at or near a ridge–transform intersection. Emplacement may have occurred as a result of conversion of the transform fault to a subduction zone during a change in relative plate motion. A ridge–transform setting is compatible with the intraplate character of some of the transitional basalts, which probably represent off-axis (seamount) magmatism, marked by the absence of cumulate gabbros and the presence of a serpentinite mélange cut by basaltic dykes. The ridge–transform model suggests formation of the ophiolite in a narrow ocean basin separating the Sanandaj-Sirjan microcontinent from the Central Iran Block in Late Cretaceous time.


2021 ◽  
pp. 1-21
Author(s):  
Melikan Akbaş ◽  
Cengiz Okuyucu

Abstract The Hadim Nappe, which is one of the allochthonous tectonic units in the Tauride Belt, in southern Turkey, includes a continuous stratigraphic succession from the Middle(?)–Late Devonian to Late Cretaceous. A relatively complete succession of the upper Serpukhovian to Bashkirian is exposed in the Central Taurides, where two sections (Yassıpınar and Gölbelen) have been selected for detailed biostratigraphic investigations. The Mississippian-Pennsylvanian boundary in these sections was determined by the first appearance datum of the Plectostaffella jakhensis and located in the oolitic limestone facies indicating a shallow-water depositional environment. The uppermost Serpukhovian and regional Bashkirian substages (Syuranian, Akavasian, Askynbashian, and Arkhangelskian) were determined by index taxa, namely Plectostaffella jakhensis, P. bogdanovkensis, P. varvariensis, Pseudostaffella antiqua, Staffellaeformes staffellaeformis, Tikhonovichiella tikhonovichi, and Verella spicata. Fifty fusulinid species belonging to fourteen genera were determined in two sections, in which two species are new: Depratina turani Akbaş new species and Tikhonovichiella praetikhonovichi Akbaş new species. The taxonomic positions of two fusulinid species (Depratina convoluta n. comb. and Staffellaeformes parva robusta n. comb.) are revised. The studied fusulinid assemblages correlate with fusulinid assemblages from the southern Urals, Russian Platform, Donetz Basin, Darvaz, Spain, central Iran, and some other regions of the Tethyan Realm. UUID: http://zoobank.org/bcbb6c72-f6f9-4e77-9cf9-3572bd731ff3


Lithos ◽  
2014 ◽  
Vol 202-203 ◽  
pp. 300-316 ◽  
Author(s):  
Samet Saka ◽  
Ibrahim Uysal ◽  
Recep Melih Akmaz ◽  
Melanie Kaliwoda ◽  
Rupert Hochleitner

Sign in / Sign up

Export Citation Format

Share Document