Use of 1-D subsurface thermal profiles to characterize the groundwater flow in the Central Nile Delta region

2020 ◽  
Vol 13 (3) ◽  
Author(s):  
Zenhom E. Salem ◽  
Abdelaziz El-Nahrawy
Metallography ◽  
1979 ◽  
Vol 12 (4) ◽  
pp. 313-324 ◽  
Author(s):  
J. Pelleg ◽  
J. Baram ◽  
E. Oren

2009 ◽  
Vol 3 (1) ◽  
pp. 123-126 ◽  
Author(s):  
S. M. Attaher ◽  
M. A. Medany ◽  
A. F. Abou-Hadid

Abstract. The overall agricultural system in the Nile Delta region is considered as one of the highest intensive and complicated agriculture systems in the world. According to the recent studies, the Nile Delta region is one of the highly vulnerable regions in the world to climate change. Sea level rise, soil and water degradation, undiversified crop-pattern, yield reduction, pests and disease severity, and irrigation and drainage management were the main key factors that increased vulnerability of the agriculture sector in that region. The main objective of this study is to conduct a community-based multi-criteria adaptation assessment in the Nile Delta using a preset questionnaire. A list of possible adaptation measures for agriculture sector was evaluated. The results indicated that the Nile Delta growers have strong perceptions to act positively to reduce the impacts of climate change. They reflected the need to improve the their adaptive capacity based on clear scientific message with adequate governmental support to coop with the negative impacts of climate change.


2011 ◽  
Vol 11 (20) ◽  
pp. 10637-10648 ◽  
Author(s):  
H. S. Marey ◽  
J. C. Gille ◽  
H. M. El-Askary ◽  
E. A. Shalaby ◽  
M. E. El-Raey

Abstract. Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) at 550 nm were examined for the 10 yr period from 2000–2009. Significant monthly variability is observed in the AOD with maxima in April or May (~0.5) and October (~0.45), and a minimum in December and January (~0.2). Monthly mean values of UV Aerosol Index (UVAI) retrieved by the Ozone Monitoring Instrument (OMI) for 4 yr (2005–2008) exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL), while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR) data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.


Sign in / Sign up

Export Citation Format

Share Document