Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future

2021 ◽  
Vol 14 (12) ◽  
Author(s):  
Derya Evrim Koç ◽  
Demet Biltekin ◽  
Beyza Ustaoğlu
2021 ◽  
Vol 18 (12) ◽  
pp. 3657-3687
Author(s):  
Jurek Müller ◽  
Fortunat Joos

Abstract. Peatlands are diverse wetland ecosystems distributed mostly over the northern latitudes and tropics. Globally they store a large portion of the global soil organic carbon and provide important ecosystem services. The future of these systems under continued anthropogenic warming and direct human disturbance has potentially large impacts on atmospheric CO2 and climate. We performed global long-term projections of peatland area and carbon over the next 5000 years using a dynamic global vegetation model forced with climate anomalies from 10 models of the Coupled Model Intercomparison Project (CMIP6) and three standard future scenarios. These projections are seamlessly continued from a transient simulation from the Last Glacial Maximum to the present to account for the full transient history and are continued beyond 2100 with constant boundary conditions. Our results suggest short to long-term net losses of global peatland area and carbon, with higher losses under higher-emission scenarios. Large parts of today's active northern peatlands are at risk, whereas peatlands in the tropics and, in case of mitigation, eastern Asia and western North America can increase their area and carbon stocks. Factorial simulations reveal committed historical changes and future rising temperature as the main driver of future peatland loss and increasing precipitations as the driver for regional peatland expansion. Additional simulations forced with climate anomalies from a subset of climate models which follow the extended CMIP6 scenarios, transient until 2300, show qualitatively similar results to the standard scenarios but highlight the importance of extended transient future scenarios for long-term carbon cycle projections. The spread between simulations forced with different climate model anomalies suggests a large uncertainty in projected peatland changes due to uncertain climate forcing. Our study highlights the importance of quantifying the future peatland feedback to the climate system and its inclusion into future earth system model projections.


2021 ◽  
Author(s):  
Jurek Müller ◽  
Fortunat Joos

Abstract. Peatlands are diverse wetland ecosystems distributed mostly over the northern latitudes and tropics. Globally they store a large portion of the global soil organic carbon and provide important ecosystem services. The future of these systems under continued anthropogenic warming and direct human disturbance has potentially large impacts on atmospheric CO2 and climate. We performed global long term projections of peatland area and carbon over the next 5000 years using a dynamic global vegetation model forced with climate anomalies from ten models of the Coupled Model Intercomparison Project (CMIP6) and three scenarios. These projections are continued from a transient simulation from the Last Glacial Maximum to the present to account for the full transient history. Our results suggest short to long term net losses of global peatland area and carbon, with higher losses under higher emission scenarios. Large parts of today's active northern peatlands are at risk. Conditions for peatlands in the tropics and, in case of mitigation, eastern Asia and western north America improve. Factorial simulations reveal committed historical changes and future rising temperature as the main driver of future peatland loss and increasing precipitations as driver for regional peatland expansion. Additional simulations forced with two CMIP6 scenarios extended transiently beyond 2100, show qualitatively similar results to the standard scenarios, but highlight the importance of extended future scenarios for long term carbon cycle projections. The spread between simulations forced with different climate model anomalies suggests a large uncertainty in projected peatland variables due to uncertain climate forcing. Our study highlights the importance of quantifying the future peatland feedback to the climate system and its inclusion into future earth system model projections.


2020 ◽  
Author(s):  
Michela Leonardi ◽  
Francesco Boschin ◽  
Paolo Boscato ◽  
Andrea Manica

AbstractAn understanding of how ecological niches can change through time is key to predicting the effect of future global change. Past climatic fluctuations provide a natural experiment to assess the extent to which species can change their niche. Here we use an extensive archaeological database to formally test whether the niche of four European ungulates changed between 40 and 8 kya (i.e. before major anthropogenic habitat modification and excluding the confounding effect of domestication). We find that niche change depended on habitat. Horse and aurochs, which are adapted to open environment, changed their niche after the Last Glacial Maximum, and it is unclear whether this was the result of adaptation, or an expansion of the realized niche as a response to the extinction of other megafauna (competitors and predators) that shared the same habitat preferences. On the other hand, red deer and wild boar, which prefer close and semi-close habitats, did not change their niche during the same period; possibly because these habitats have experienced fewer extinctions. Irrespective of the mechanism that might have led to the observed niche changes, the fact that large mammals with long generation times can change their niche over the time period of thousands of years cautions against assuming a constant niche when predicting the future.Significance statementWhen predicting species responses to future change, it is often assumed that their habitat preferences (i.e. their niche) will not change. However, it is strongly debated whether this is reasonable. Here we show that two out of four species of large European ungulates changed their niche following the Last Glacial Maximum, possibly as a response to the reorganization of animal communities that resulted from numerous megafauna extinctions. This finding cautions against the assumption of a constant niche, highlighting that, to predict the future, we will ultimately need to understand the mechanisms that underpin the success of a given species under different climatic conditions.


2001 ◽  
Vol 54 (1-3) ◽  
pp. 43-80 ◽  
Author(s):  
Sandy P. Harrison ◽  
Karen E. Kohfeld ◽  
Caroline Roelandt ◽  
Tanguy Claquin

2021 ◽  
Author(s):  
Fenglin Lü ◽  
Zhe Sun ◽  
Kan Yuan ◽  
Xiaohuan Hou ◽  
Mingda Wang ◽  
...  

Abstract The mechanisms of recent Elevation-Dependent Warming (EDW) remain debated because nearly all data sources are limited to past decades and subject to anthropogenic effects. Here, we study how temperature changed along the elevation gradient since the Last Glacial Maximum (LGM) and aim to shed lights on the mechanisms of EDW and implications for the future climate change in alpine regions. We present a unique network of 192 quantitative terrestrial temperature records along elevation gradient up to ~5000 m to study the Elevation-Dependent Temperature Amplification (EDTA) since LGM. EDTA is exemplified by stronger variability at high-elevation sites during climate transitions of millennial- to centennial-scales. The spatiotemporal patterns of EDTA indicate that the surface albedo, caused by changes in glacier and vegetation coverage, played the most important role, which resulted in steeper lapse rate during LGM and flatter in Mid-Holocene. This suggests that alpine regions experienced much colder environments in glacial and much warmer in interglacial periods. This also implies that the mountain regions would warm much faster in the context of current global change. The study emphasizes the need to reassess and reevaluate alpine climate change mechanisms, and to reconsider the mitigation and adaptation implementation strategies under the future global warming scenarios.


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


Sign in / Sign up

Export Citation Format

Share Document