scholarly journals Following The Niche: Reconstructing 32,000 Years Of Niche Dynamics In Four European Ungulate Species

2020 ◽  
Author(s):  
Michela Leonardi ◽  
Francesco Boschin ◽  
Paolo Boscato ◽  
Andrea Manica

AbstractAn understanding of how ecological niches can change through time is key to predicting the effect of future global change. Past climatic fluctuations provide a natural experiment to assess the extent to which species can change their niche. Here we use an extensive archaeological database to formally test whether the niche of four European ungulates changed between 40 and 8 kya (i.e. before major anthropogenic habitat modification and excluding the confounding effect of domestication). We find that niche change depended on habitat. Horse and aurochs, which are adapted to open environment, changed their niche after the Last Glacial Maximum, and it is unclear whether this was the result of adaptation, or an expansion of the realized niche as a response to the extinction of other megafauna (competitors and predators) that shared the same habitat preferences. On the other hand, red deer and wild boar, which prefer close and semi-close habitats, did not change their niche during the same period; possibly because these habitats have experienced fewer extinctions. Irrespective of the mechanism that might have led to the observed niche changes, the fact that large mammals with long generation times can change their niche over the time period of thousands of years cautions against assuming a constant niche when predicting the future.Significance statementWhen predicting species responses to future change, it is often assumed that their habitat preferences (i.e. their niche) will not change. However, it is strongly debated whether this is reasonable. Here we show that two out of four species of large European ungulates changed their niche following the Last Glacial Maximum, possibly as a response to the reorganization of animal communities that resulted from numerous megafauna extinctions. This finding cautions against the assumption of a constant niche, highlighting that, to predict the future, we will ultimately need to understand the mechanisms that underpin the success of a given species under different climatic conditions.

2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


2021 ◽  
Vol 18 (12) ◽  
pp. 3657-3687
Author(s):  
Jurek Müller ◽  
Fortunat Joos

Abstract. Peatlands are diverse wetland ecosystems distributed mostly over the northern latitudes and tropics. Globally they store a large portion of the global soil organic carbon and provide important ecosystem services. The future of these systems under continued anthropogenic warming and direct human disturbance has potentially large impacts on atmospheric CO2 and climate. We performed global long-term projections of peatland area and carbon over the next 5000 years using a dynamic global vegetation model forced with climate anomalies from 10 models of the Coupled Model Intercomparison Project (CMIP6) and three standard future scenarios. These projections are seamlessly continued from a transient simulation from the Last Glacial Maximum to the present to account for the full transient history and are continued beyond 2100 with constant boundary conditions. Our results suggest short to long-term net losses of global peatland area and carbon, with higher losses under higher-emission scenarios. Large parts of today's active northern peatlands are at risk, whereas peatlands in the tropics and, in case of mitigation, eastern Asia and western North America can increase their area and carbon stocks. Factorial simulations reveal committed historical changes and future rising temperature as the main driver of future peatland loss and increasing precipitations as the driver for regional peatland expansion. Additional simulations forced with climate anomalies from a subset of climate models which follow the extended CMIP6 scenarios, transient until 2300, show qualitatively similar results to the standard scenarios but highlight the importance of extended transient future scenarios for long-term carbon cycle projections. The spread between simulations forced with different climate model anomalies suggests a large uncertainty in projected peatland changes due to uncertain climate forcing. Our study highlights the importance of quantifying the future peatland feedback to the climate system and its inclusion into future earth system model projections.


2021 ◽  
Author(s):  
Jurek Müller ◽  
Fortunat Joos

Abstract. Peatlands are diverse wetland ecosystems distributed mostly over the northern latitudes and tropics. Globally they store a large portion of the global soil organic carbon and provide important ecosystem services. The future of these systems under continued anthropogenic warming and direct human disturbance has potentially large impacts on atmospheric CO2 and climate. We performed global long term projections of peatland area and carbon over the next 5000 years using a dynamic global vegetation model forced with climate anomalies from ten models of the Coupled Model Intercomparison Project (CMIP6) and three scenarios. These projections are continued from a transient simulation from the Last Glacial Maximum to the present to account for the full transient history. Our results suggest short to long term net losses of global peatland area and carbon, with higher losses under higher emission scenarios. Large parts of today's active northern peatlands are at risk. Conditions for peatlands in the tropics and, in case of mitigation, eastern Asia and western north America improve. Factorial simulations reveal committed historical changes and future rising temperature as the main driver of future peatland loss and increasing precipitations as driver for regional peatland expansion. Additional simulations forced with two CMIP6 scenarios extended transiently beyond 2100, show qualitatively similar results to the standard scenarios, but highlight the importance of extended future scenarios for long term carbon cycle projections. The spread between simulations forced with different climate model anomalies suggests a large uncertainty in projected peatland variables due to uncertain climate forcing. Our study highlights the importance of quantifying the future peatland feedback to the climate system and its inclusion into future earth system model projections.


2001 ◽  
Vol 54 (1-3) ◽  
pp. 43-80 ◽  
Author(s):  
Sandy P. Harrison ◽  
Karen E. Kohfeld ◽  
Caroline Roelandt ◽  
Tanguy Claquin

1989 ◽  
Vol 32 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Calvin J. Heusser

AbstractLate-Quaternary paleoecological and glacial evidence from the higher latitudes of the Southern Hemisphere implies overall uniformity of large-scale glacial and interglacial climatic fluctuations for the past 40,000 yr. Climate of the last glacial maximum, variously dated between 30,000 and 11,000 yr B.P., was relatively cold and dry compared with the warmer, more humid climate of the Holocene and the interstade preceding the last glacial maximum. Conditions were apparently coldest during millennia centered around 20,000 yr B.P. and warmest in the early Holocene. Recorded small-scale fluctuations, frequently variable for any given time interval, are less consistent. A cold late-glacial episode, estimated as occurring between ca. 13,000 and 11,000 yr B.P. in Antarctica, possibly was coeval with the Younger Dryas Stade in northwestern Europe and may be correlative with a climatic episode in southern South America and perhaps in New Zealand and South Georgia; however, there is no evidence for the event in Tasmania. General atmospheric circulation models for the polar latitudes at the time of the last glacial maximum show an intensification of the southern westerlies, apparently a result of the expansion of ice cover in Antarctica and of sea ice in the Southern Ocean.


2021 ◽  
Author(s):  
Fenglin Lü ◽  
Zhe Sun ◽  
Kan Yuan ◽  
Xiaohuan Hou ◽  
Mingda Wang ◽  
...  

Abstract The mechanisms of recent Elevation-Dependent Warming (EDW) remain debated because nearly all data sources are limited to past decades and subject to anthropogenic effects. Here, we study how temperature changed along the elevation gradient since the Last Glacial Maximum (LGM) and aim to shed lights on the mechanisms of EDW and implications for the future climate change in alpine regions. We present a unique network of 192 quantitative terrestrial temperature records along elevation gradient up to ~5000 m to study the Elevation-Dependent Temperature Amplification (EDTA) since LGM. EDTA is exemplified by stronger variability at high-elevation sites during climate transitions of millennial- to centennial-scales. The spatiotemporal patterns of EDTA indicate that the surface albedo, caused by changes in glacier and vegetation coverage, played the most important role, which resulted in steeper lapse rate during LGM and flatter in Mid-Holocene. This suggests that alpine regions experienced much colder environments in glacial and much warmer in interglacial periods. This also implies that the mountain regions would warm much faster in the context of current global change. The study emphasizes the need to reassess and reevaluate alpine climate change mechanisms, and to reconsider the mitigation and adaptation implementation strategies under the future global warming scenarios.


Sign in / Sign up

Export Citation Format

Share Document