Landform response of tectonic activity in the Parlung Tsangpo River basin: evidence from digital elevation model-based morphometric analysis in the southeastern margin of the Tibetan Plateau

2021 ◽  
Vol 14 (22) ◽  
Author(s):  
Mengge Tang ◽  
Lan Wei ◽  
MingLiang Luo ◽  
Weiming Liu ◽  
Yuli He ◽  
...  
2020 ◽  
Vol 206 ◽  
pp. 01027
Author(s):  
Jin Yao ◽  
Yi Chao-lu ◽  
Fu Ping

Topographic data on The Tibetan Plateau (TP) terrain are fundamental for geoscientific research, but are difficult to obtain. The Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are two commonly used GDEM data. Verifying the accuracy of the two dataset for the TP mountain areas provides a reference point for the application of both DEMs. For evaluating the elevation accuracy and topographic information, we used 8242 field measurements from Differential Global Positioning System (DGPS) points and DEM data generated from 1:100,000 topographic maps to examine the accuracy of ASTER GDEM V2 and SRTM3 V4.1 elevation results. The average RMSE for elevation differences between DGPS and ASTER GDEM across the study areas was 18.56m while the average RMSE between DGPS and SRTM3 was 10.39m. The average RMSEs of ASTER GDEM and SRTM3 in glaciated areas were 8.55m and 5.87m, respectively. The vertical accuracy of SRTM3 is better than that of ASTER GDEM. The vertical accuracy of both DEMs do not vary with altitude, but is related to aspect and slope.


2020 ◽  
Vol 13 (2) ◽  
pp. 713
Author(s):  
Danilo Da Silva Dutra ◽  
André Ricardo Furlan ◽  
Luís Eduardo De Souza Robaina

O relevo é a base onde todas as populações vivem e desenvolvem suas atividades, derivando dessa relação vantagens e desvantagens, daí a importância de conhecê-lo através do estudo de suas diferentes formas e elementos. Nesse contexto insere-se a importância de metodologias para o seu estudo, sendo que atualmente vivencia-se a expressividade de dados disponíveis para aplicação de geoprocessamento. A partir das geotecnologias pode-se empreender diversas análises sobre o relevo, destacando-se nesse contexto, a proposta dos geomorphons a qual foi aplicada na bacia hidrográfica do arroio Pantanoso. O objetivo da pesquisa é a identificação e análise dos elementos do relevo definido por geomorphons, quais sejam: 1) Planos, 2) Picos, 3) Cristas, 4) Ressaltos, 5) Crista secundária, 6) Encostas, 7) Escavado, 8) Base de encosta, 9) Vales e 10) Fosso. A determinação dos geomorphons foi a partir do processamento em ambiente SIG do Modelo Digital de Elevação (MDE) do Shuttle Radar Topograph Mission (SRTM) com resolução espacial 3 arcsec (90 metros), “L” Lookup (distância em metros) definiu-se como de 20 pixels (1800 metros) e o “T” Theresholdt (nivelamento em graus) definiu-se em 2º. Para visualização do comportamento dos elementos do relevo na área de estudo realizaram-se trabalhos de campo, o que contribuiu para evidenciar a padronização desses elementos. Os quatro elementos geomorphons mais representativos são encostas, vales, cristas e planos. Subdivision of relief elements through the proposal of geomorphons: river basin of arroio Pantanoso - Canguçu/RS A B S T R A C TRelief is the basis where all populations live and develop their activities, deriving from this relation advantages and disadvantages, hence the importance of knowing it through the study of its different forms and elements. In this context, the importance of methodologies for its study is inserted and geoprocessing application for data available for is currently experienced. From the geotechnologies one can undertake several analyzes on the relief, highlighting in this context, the proposal of the geomorphons which was applied in Pantanoso stream basin. The objective of the research is to identify and analyze the elements of the relief defined by geomorphons, namely: 1) Flats, 2) Peaks, 3) Ridges, 4) Shoulders, 5) Spurs, 6)Slopes, 7) Hollows, 8) Footslope, 9) Valley and 10) Pits. The determination of the geomorphons was based on the GIS environment of the Shuttle Radar Topograph Mission (SRTM) Digital Elevation Model (DEM) with spatial resolution 3 arcsec (90 meters), "L" Lookup (distance in meters) was defined as of 20 pixels (1800 meters) and the "T" Theresholdt (leveling in degrees) was defined in 2º. In order to visualize the behavior of the relief elements in the study area, fieldwork was carried out, which contributed to the standardization of these elements. The four most representative geomorphons, which are: Slopes, Valleys, Ridges and Flat.Keywords: SIG, Geomorphons; Canguçu/RS; relief


2006 ◽  
Vol 21 (4) ◽  
pp. 195-202
Author(s):  
Marvin R. Pyles ◽  
Mari Kramer

Abstract An aerial photo-based inventory of landslides on recently harvested and reforested land after a significant landslide-producing storm in February 1996, was compared with a digital elevation model-based assessment of slope stability (shallow landsliding stability model [SHALSTAB]) for Confederated Tribes of Siletz Indians (CTSI) and surrounding forestland. The SHALSTAB predictions of landslide locations did not correlate well with the locations of observed landslides. Eighty-nine percent of the landslides on the more stable landform in the southern portion of the CTSI ownership occurred on land that SHALSTAB indicated to be at a low risk of landsliding. Seventy-two percent of the landslides on the less stable landform to the north occurred on land that SHALSTAB indicated to be at a low risk of landsliding. Conversely, only 11 and 28%, respectively, of the observed landslides occurred on lands predicted to be “chronically unstable” or at “high risk” by SHALSTAB. This level of correct prediction of landsliding was judged to be unacceptable for SHALSTAB to be used for slope stability assessment as a part of forest management planning. West. J. Appl. For. 21(4):195–202.


2019 ◽  
Vol 9 (18) ◽  
pp. 3690 ◽  
Author(s):  
Daeryong Park ◽  
Huan-Jung Fan ◽  
Jun-Jie Zhu ◽  
Sang-Eun Oh ◽  
Myoung-Jin Um ◽  
...  

This study analyzed the result of parameter optimization using the digital elevation model (DEM) resolution in the TOPography-based hydrological MODEL (TOPMODEL). Also, this study investigated the sensitivity of the TOPMODEL efficiency by applying the varying resolution of the DEM grid cell size. This work applied TOPMODEL to two mountainous watersheds in South Korea: the Dongkok watershed in the Wicheon river basin and the Ieemokjung watershed in the Pyeongchang river basin. The DEM grid cell sizes were 5, 10, 20, 40, 80, 160, and 300 m. The effect of DEM grid cell size on the runoff was investigated by using the DEM grid cell size resolution to optimize the parameter sets. As the DEM grid cell size increased, the estimated peak discharge was found to increase based on different parameter sets. In addition, this study investigated the DEM grid cell size that was most reliable for use in runoff simulations with various parameter sets in the experimental watersheds. The results demonstrated that the TOPMODEL efficiencies in both the Dongkok and Ieemokjung watersheds rarely changed up to a DEM grid-size resolution of about 40 m, but the TOPMODEL efficiencies changed with the coarse resolution as the parameter sets were changed. This study is important for understanding and quantifying the modeling behaviors of TOPMODEL under the influence of DEM resolution based on different parameter sets.


Sign in / Sign up

Export Citation Format

Share Document