Analysis of Spectral Vegetation Signal Characteristics as a Function of Soil Moisture Conditions Using Hyperspectral Remote Sensing

2013 ◽  
Vol 42 (2) ◽  
pp. 311-324 ◽  
Author(s):  
A. Brosinsky ◽  
A. Lausch ◽  
D. Doktor ◽  
C. Salbach ◽  
I. Merbach ◽  
...  
2012 ◽  
Vol 124 ◽  
pp. 596-609 ◽  
Author(s):  
Maarit Middleton ◽  
Paavo Närhi ◽  
Hilkka Arkimaa ◽  
Eija Hyvönen ◽  
Viljo Kuosmanen ◽  
...  

Fire ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 55 ◽  
Author(s):  
Alexander J. Schaefer ◽  
Brian I. Magi

For this study, we characterized the dependence of fire counts (FCs) on soil moisture (SM) at global and sub-global scales using 15 years of remote sensing data. We argue that this mathematical relationship serves as an effective way to predict fire because it is a proxy for the semi-quantitative fire–productivity relationship that describes the tradeoff between fuel availability and climate as constraints on fire activity. We partitioned the globe into land-use and land-cover (LULC) categories of forest, grass, cropland, and pasture to investigate how the fire–soil moisture (fire–SM) behavior varies as a function of LULC. We also partitioned the globe into four broadly defined biomes (Boreal, Grassland-Savanna, Temperate, and Tropical) to study the dependence of fire–SM behavior on LULC across those biomes. The forest and grass LULC fire–SM curves are qualitatively similar to the fire–productivity relationship with a peak in fire activity at intermediate SM, a steep decline in fire activity at low SM (productivity constraint), and gradual decline as SM increases (climate constraint), but our analysis highlights how forests and grasses differ across biomes as well. Pasture and cropland LULC are a distinctly human use of the landscape, and fires detected on those LULC types include intentional fires. Cropland fire–SM curves are similar to those for grass LULC, but pasture fires are evident at higher SM values than other LULC. This suggests a departure from the expected climate constraint when burning is happening at non-optimal flammability conditions. Using over a decade of remote sensing data, our results show that quantifying fires relative to a single physical climate variable (soil moisture) is possible on both cultivated and uncultivated landscapes. Linking fire to observable soil moisture conditions for different land-cover types has important applications in fire management and fire modeling.


2020 ◽  
Vol 12 (17) ◽  
pp. 2733 ◽  
Author(s):  
Jashvina Devadoss ◽  
Nicola Falco ◽  
Baptiste Dafflon ◽  
Yuxin Wu ◽  
Maya Franklin ◽  
...  

In the headwater catchments of the Rocky Mountains, plant productivity and its dynamics are largely dependent upon water availability, which is influenced by changing snowmelt dynamics associated with climate change. Understanding and quantifying the interactions between snow, plants and soil moisture is challenging, since these interactions are highly heterogeneous in mountainous terrain, particularly as they are influenced by microtopography within a hillslope. Recent advances in satellite remote sensing have created an opportunity for monitoring snow and plant dynamics at high spatiotemporal resolutions that can capture microtopographic effects. In this study, we investigate the relationships among topography, snowmelt, soil moisture and plant dynamics in the East River watershed, Crested Butte, Colorado, based on a time series of 3-meter resolution PlanetScope normalized difference vegetation index (NDVI) images. To make use of a large volume of high-resolution time-lapse images (17 images total), we use unsupervised machine learning methods to reduce the dimensionality of the time lapse images by identifying spatial zones that have characteristic NDVI time series. We hypothesize that each zone represents a set of similar snowmelt and plant dynamics that differ from other identified zones and that these zones are associated with key topographic features, plant species and soil moisture. We compare different distance measures (Ward and complete linkage) to understand the effects of their influence on the zonation map. Results show that the identified zones are associated with particular microtopographic features; highly productive zones are associated with low slopes and high topographic wetness index, in contrast with zones of low productivity, which are associated with high slopes and low topographic wetness index. The zones also correspond to particular plant species distributions; higher forb coverage is associated with zones characterized by higher peak productivity combined with rapid senescence in low moisture conditions, while higher sagebrush coverage is associated with low productivity and similar senescence patterns between high and low moisture conditions. In addition, soil moisture probe and sensor data confirm that each zone has a unique soil moisture distribution. This cluster-based analysis can tractably analyze high-resolution time-lapse images to examine plant-soil-snow interactions, guide sampling and sensor placements and identify areas likely vulnerable to ecological change in the future.


2014 ◽  
Vol 26 (5) ◽  
pp. 565-572 ◽  
Author(s):  
Joseph Levy ◽  
Anne Nolin ◽  
Andrew Fountain ◽  
James Head

AbstractSoil moisture is a spatially heterogeneous quantity in the McMurdo Dry Valleys of Antarctica that exerts a large influence on the biological community and on the thermal state of Dry Valleys permafrost. The goal of this project was to determine whether hyperspectral remote sensing techniques could be used to determine soil moisture conditions in the Dry Valleys. We measured the spectral reflectance factors of wetted soil samples from the Dry Valleys under natural light conditions and related diagnostic spectral features to surface layer soil moisture content. Diagnostic water absorption features in the spectra at 1.4 µm and 1.9 µm were present in all samples, including samples doped with high concentrations of chloride salts. The depth of the 1.4 µm absorption is shown to increase linearly with increasing gravimetric water content. These results suggest that airborne hyperspectral imaging of the Dry Valleys could generate soil moisture maps of this environment over large spatial areas using non-invasive remote-sensing techniques.


1997 ◽  
Author(s):  
Tom Wilson ◽  
Rebecca Baugh ◽  
Ron Contillo ◽  
Tom Wilson ◽  
Rebecca Baugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document