Ultrasonic Vibration Assisted Cutting of Nomex Honeycomb Core Materials

Author(s):  
Dao-Hui Xiang ◽  
Bang-Fu Wu ◽  
Yun-Long Yao ◽  
Bo Zhao ◽  
Jin-Yuan Tang
2020 ◽  
Vol 10 (13) ◽  
pp. 4676 ◽  
Author(s):  
Wenjun Cao ◽  
Jun Zha ◽  
Yaolong Chen

The disc-cutter is a finishing tool for the ultrasonic-cutting of paper honeycomb-core material. The cutting state directly affects the machining accuracy and surface quality of the workpiece. The cutting force is an important physical quantity and the cause of ultrasonic cutting defects of the honeycomb-core material. Due to differences in the mechanical properties and cutting performance of honeycomb-core materials and commonly used metal materials, existing metal-cutting-force models cannot be applied to the calculation of ultrasonic cutting forces in the processing of honeycomb-core materials. In response to this problem—combined with actual working conditions using the ABAQUS finite element analysis software—a finite element simulation model of the ultrasonic vibration-assisted cutting force of the disc-cutter on the honeycomb-core material was established, and the cutting curves and values were obtained. The experiment of ultrasonic vibration cutting of the disc-cutter proves that from the surface morphology of the honeycomb core, the milling-width has the greatest influence on the cutting force, and the cutting-depth has the smallest influence on the cutting force. The maximum error between the cutting force experimental results and the finite element simulation results under the same cutting conditions was 13.2%, which means that the established cutting-force finite element model is more accurate and can be used to predict the cutting in honeycomb ultrasonic vibration-assisted cutting-force value. Finally, based on the response surface method, a three-dimensional cutting force prediction model of the ultrasonic cutting honeycomb core of the disc-cutter was established by using the simulation model data. The results of this study can provide a useful basis for the improvement of cutting performance and processing efficiency in the processing of paper honeycomb-core materials.


2020 ◽  
Vol 11 (1) ◽  
pp. 354
Author(s):  
Dingyi Sun ◽  
Renke Kang ◽  
Yidan Wang ◽  
Jialin Guo ◽  
Zhigang Dong

The vertical surface is a common and typical characteristic structure among Nomex honeycomb core components. However, the conventional high-speed milling and ultrasonic cutting struggle to meet the high-quality machining requirements of a vertical surface. In this study, an ultrasonic trepanning method is proposed and a special ultrasonic trepanning tool is developed, aiming to improve the machining quality of the vertical surface. The trepanning quality of the vertical surface is further studied from the aspects of dimensional error and trepanning incision quality. Based on the kinematic characteristics of ultrasonic trepanning, a theoretical model of dimensional error in trepanning is established. Meanwhile, the influence of ultrasonic vibration on the trepanning process is analyzed, and the result shows that ultrasonic vibration significantly improves the equivalent elastic constant of the honeycomb core material. The theoretical model is proposed to predict the trepanning dimensional error, which is verified by experiment. The effectiveness of the ultrasonic vibration on the incision quality is verified by several experiments, and the quantitative analysis results demonstrate that ultrasonic vibration significantly improves the trepanning quality of the vertical surface.


2019 ◽  
Vol 104 (1-4) ◽  
pp. 979-992 ◽  
Author(s):  
Di Kang ◽  
Ping Zou ◽  
Hao Wu ◽  
Jingwei Duan ◽  
Wenjie Wang

2006 ◽  
Vol 306-308 ◽  
pp. 763-768
Author(s):  
Hyoung Gu Kim ◽  
Hoong Soo Yoon ◽  
Nak Sam Choi

Theoretical formulas for effective elastic modulus and Poisson's ratio of honeycomb core materials were proposed considering the bending, axial and shear deformations of cell walls. Theoretical results obtained by the formulas showed orthotropic elasticity and large Poisson’s ratio, which were comparable to results by finite element analysis(FEA). Tensile test of honeycomb sandwich composite(HSC) plates was performed for analysis of their deformation behaviors and interlaminar stresses. Equivalent plate model using the theoretical results of honeycomb core layer show that interlaminar shear stress occurring due to large difference of Poisson’s ratio between skin and honeycomb core layers led to the delamination in HSC plate under tensile loading. Load-displacement behavior of HSC specimen simulated by equivalent plate model coincided fairly with that of detailed FEA model similar to experimental results.


Author(s):  
Yue Liu ◽  
Weicheng Gao ◽  
Wei Liu ◽  
Zhou Hua

This paper presents an investigation on the mechanical response of the Nomex honeycomb core subjected to flatwise compressive loading. Thin plate elastic in-plane compressive buckling theory is used to analyze the Nomex honeycomb core cell wall. A mesoscopic finite element (FE) model of honeycomb sandwich structure with the Nomex honeycomb cell walls is established by employing ABAQUS/Explicit shell elements. The compressive strength and compressive stiffness of Nomex honeycomb core with different heights and thickness of cell walls, i.e. double cell walls and single cell walls, are analyzed numerically using the FE model. Flatwise compressive tests are also carried out on bare honeycomb cores to validate the numerical method. The results suggest that the compressive strength and compression stiffness are related to the geometric dimensions of the honeycomb core. The Nomex honeycomb core with a height of 6 mm has a higher strength than that of 8 mm. In addition, the honeycomb core with lower height possesses stronger anti-instability ability, including the compressive strength and stiffness. The proposed mesoscopic model can effectively simulate the crushing process of Nomex honeycomb core and accurately predict the strength and stiffness of honeycomb sandwich panels. Our work is instructive to the practical applications in engineering.


2010 ◽  
Vol 17 (7) ◽  
pp. 542-552 ◽  
Author(s):  
S. Banerjee ◽  
M. Battley ◽  
D. Bhattacharyya

Sign in / Sign up

Export Citation Format

Share Document