Development of a Three-Dimensional Ultrasonic Elliptical Vibration Transducer (3D-UEVT) Based on Sandwiched Piezoelectric Actuator for Micro-grooving

2019 ◽  
Vol 20 (7) ◽  
pp. 1229-1240 ◽  
Author(s):  
Rendi Kurniawan ◽  
Saood Ali ◽  
Ki Moon Park ◽  
Chang Ping Li ◽  
Tae Jo Ko
2014 ◽  
Vol 490-491 ◽  
pp. 600-606
Author(s):  
Jie Qiong Lin ◽  
Jin Guo Han ◽  
Dan Jing ◽  
Xian Jing

Elliptical vibration cutting (EVC) process and three dimensional cutting surfaces are analyzed in this paper to understand the formation of surface topography. The model of EVC surface topography is established based on curved surface remove function under the assumption that the tool edge is sharp enough. And simulation analysis of surface topography is conducted with different feed offset ratios. Results indicate that RMS change with feed offset ratios λ. The range of RMS is larger when feed offset ratio ranges from both 0 to 0.4 and 0.6 to 1, while the range is smaller when feed offset ratio changes from 0.4 to 0.6. Whats more, RMS reaches the minimum when feed offset ratio is 0.5. The present research provides some references for reducing the height of vibration ripples and improving EVC surface quality.


Author(s):  
Ali H. Ammouri ◽  
Ramsey F. Hamade

Presented is the detailed design and implementation of a bi-directional ultrasonic elliptical vibration actuator (BUEVA) for micro machining. Removal of material occurs via a generated elliptical tool motion resembling a natural ‘spoon feeding’ action in contrast to in-plane, horizontal motion utilized by most existing setups. The motion is generated by two stacked ceramic multilayer actuator ring (SCMAR) piezo elements vibrating out of phase in the tool’s axial and transverse directions. The amplitude of vibration of the tool is controlled in order to vary the cutting depth according to the desired cutting parameters. To ensure precise tool positioning, the BUEVA actuator is fitted to a 3-axis precision machining center that provides the necessary tool path. The cutting forces and the resulting surface finish are both numerically modeled and then experimentally measured by a 3-axis mini dynamometer and a surface profilometer, respectively. Preliminary cutting results show good dimensional definition and surface integrity.


2020 ◽  
Vol 14 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Tatsuhiko Aizawa ◽  
Yasuo Saito ◽  
Hideharu Hasegawa ◽  
Kenji Wasa ◽  
◽  
...  

Micro-embossing using plasma printed micro-punch was proposed to form micro-groove textures into the copper substrate for plastic packaging of hollowed GaN HEMT-chips. In particular, the micro-groove network on the copper substrate was optimized to attain uniform stress distribution with maximum stress level being as low as possible. Three-dimensional finite element analysis was employed to investigate the optimum micro-grooving texture-topology and to attain the uniform stress distribution on the joined interface between the plastic mold and the textured copper substrate. Thereafter, plasma printing was utilized to fabricate the micro-punch for micro-embossing of the micro-grooving network into the copper substrate as a designed optimum micro-texture. This plasma printing mainly consisted of three steps. Two-dimensional micro-pattern was screen-printed onto the AISI316 die surface as a negative pattern of the optimum CAD data. The screen-printed die was plasma nitrided at 673 K for 14.4 ks at 70 Pa under the hydrogen-nitrogen mixture for selective nitrogen supersaturation onto the unprinted die surfaces. A micro-punch was developed by mechanically removing the printed parts of die material. Then, fine computer numerical control (CNC) stamping was used to yield the micro-embossed copper substrate specimens. Twelve micro-textured substrates were molded into packaged specimens by plastic molding. Finally, gross leak testing was employed to evaluate the integrity of the joined interface. The takt time required to yield the micro-grooved copper substrate by the present method was compared to the picosecond laser micro-grooving; the former showed high productivity based on this parameter.


Ultrasonics ◽  
2021 ◽  
pp. 106662
Author(s):  
Wei Bai ◽  
Kai Wang ◽  
Dongxing Du ◽  
Jianguo Zhang ◽  
Wen Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document