scholarly journals Development of a deep learning-based method to identify “good” regions of a cryo-electron microscopy grid

2020 ◽  
Vol 12 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Yuichi Yokoyama ◽  
Tohru Terada ◽  
Kentaro Shimizu ◽  
Kouki Nishikawa ◽  
Daisuke Kozai ◽  
...  
Lab on a Chip ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1378-1385 ◽  
Author(s):  
Dariush Ashtiani ◽  
Alex de Marco ◽  
Adrian Neild

Surface acoustic wave (SAW) atomisation is investigated in the context of cryo electron microscopy grid preparation. Here, the primary requirements are a reproducible and narrow plume of droplets delivering a low fluid flow rate.


2017 ◽  
Vol 197 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Stefan A. Arnold ◽  
Stefan Albiez ◽  
Andrej Bieri ◽  
Anastasia Syntychaki ◽  
Ricardo Adaixo ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1181 ◽  
Author(s):  
Todor Avramov ◽  
Dan Vyenielo ◽  
Josue Gomez-Blanco ◽  
Swathi Adinarayanan ◽  
Javier Vargas ◽  
...  

Cryo-electron microscopy (cryo-EM) is becoming the imaging method of choice for determining protein structures. Many atomic structures have been resolved based on an exponentially growing number of published three-dimensional (3D) high resolution cryo-EM density maps. However, the resolution value claimed for the reconstructed 3D density map has been the topic of scientific debate for many years. The Fourier Shell Correlation (FSC) is the currently accepted cryo-EM resolution measure, but it can be subjective, manipulated, and has its own limitations. In this study, we first propose supervised deep learning methods to extract representative 3D features at high, medium and low resolutions from simulated protein density maps and build classification models that objectively validate resolutions of experimental 3D cryo-EM maps. Specifically, we build classification models based on dense artificial neural network (DNN) and 3D convolutional neural network (3D CNN) architectures. The trained models can classify a given 3D cryo-EM density map into one of three resolution levels: high, medium, low. The preliminary DNN and 3D CNN models achieved 92.73% accuracy and 99.75% accuracy on simulated test maps, respectively. Applying the DNN and 3D CNN models to thirty experimental cryo-EM maps achieved an agreement of 60.0% and 56.7%, respectively, with the author published resolution value of the density maps. We further augment these previous techniques and present preliminary results of a 3D U-Net model for local resolution classification. The model was trained to perform voxel-wise classification of 3D cryo-EM density maps into one of ten resolution classes, instead of a single global resolution value. The U-Net model achieved 88.3% and 94.7% accuracy when evaluated on experimental maps with local resolutions determined by MonoRes and ResMap methods, respectively. Our results suggest deep learning can potentially improve the resolution evaluation process of experimental cryo-EM maps.


IUCrJ ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 854-865 ◽  
Author(s):  
Ruben Sanchez-Garcia ◽  
Joan Segura ◽  
David Maluenda ◽  
Jose Maria Carazo ◽  
Carlos Oscar S. Sorzano

Single-particle cryo-electron microscopy (cryo-EM) has recently become a mainstream technique for the structural determination of macromolecules. Typical cryo-EM workflows collect hundreds of thousands of single-particle projections from thousands of micrographs using particle-picking algorithms. However, the number of false positives selected by these algorithms is large, so that a number of different `cleaning steps' are necessary to decrease the false-positive ratio. Most commonly employed techniques for the pruning of false-positive particles are time-consuming and require user intervention. In order to overcome these limitations, a deep learning-based algorithm named Deep Consensus is presented in this work. Deep Consensus works by computing a smart consensus over the output of different particle-picking algorithms, resulting in a set of particles with a lower false-positive ratio than the initial set obtained by the pickers. Deep Consensus is based on a deep convolutional neural network that is trained on a semi-automatically generated data set. The performance of Deep Consensus has been assessed on two well known experimental data sets, virtually eliminating user intervention for pruning, and enhances the reproducibility and objectivity of the whole process while achieving precision and recall figures above 90%.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Blesson George ◽  
Anshul Assaiya ◽  
Robin J. Roy ◽  
Ajit Kembhavi ◽  
Radha Chauhan ◽  
...  

AbstractParticle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.


Sign in / Sign up

Export Citation Format

Share Document