An extended any-angle path planning algorithm for maintaining formation of multi-agent jellyfish elimination robot system

2016 ◽  
Vol 14 (2) ◽  
pp. 598-607 ◽  
Author(s):  
Hanguen Kim ◽  
Donghoon Kim ◽  
Hyungjin Kim ◽  
Jae-Uk Shin ◽  
Hyun Myung
2019 ◽  
Vol 9 (19) ◽  
pp. 4037 ◽  
Author(s):  
Rongye Shi ◽  
Peter Steenkiste ◽  
Manuela Veloso

Multi-agent path planning (MAPP) is increasingly being used to address resource allocation problems in highly dynamic, distributed environments that involve autonomous agents. Example domains include surveillance automation, traffic control and others. Most MAPP approaches assume hard collisions, e.g., agents cannot share resources, or co-exist at the same node or edge. This assumption unnecessarily restricts the solution space and does not apply to many real-world scenarios. To mitigate this limitation, this paper introduces a more general class of MAPP problems—MAPP in a soft-collision context. In soft-collision MAPP problems, agents can share resources or co-exist in the same location at the expense of reducing the quality of the solution. Hard constraints can still be modeled by imposing a very high cost for sharing. This paper motivates and defines the soft-collision MAPP problem, and generalizes the widely-used M* MAPP algorithm to support the concept of soft-collisions. Soft-collision M* (SC-M*) extends M* by changing the definition of a collision, so paths with collisions that have a quality penalty below a given threshold are acceptable. For each candidate path, SC-M* keeps track of the reduction in satisfaction level of each agent using a collision score, and it places agents whose collision scores exceed its threshold into a soft-collision set for reducing the score. Our evaluation shows that SC-M* is more flexible and more scalable than M*. It can also handle complex environments that include agents requesting different types of resources. Furthermore, we show the benefits of SC-M* compared with several baseline algorithms in terms of path cost, success rate and run time.


Author(s):  
Md Ahsan Habib ◽  
M.S. Alam ◽  
N.H. Siddique

AbstractThis paper presents a new approach to the multi-agent coverage path-planning problem. An efficient multi-robot coverage algorithm yields a coverage path for each robot, such that the union of all paths generates an almost full coverage of the terrain and the total coverage time is minimized. The proposed algorithm enables multiple robots with limited sensor capabilities to perform efficient coverage on a shared territory. Each robot is assigned to an exclusive route which enables it to carry out its tasks simultaneously, e.g., cleaning assigned floor area with minimal path overlapping. It is very difficult to cover all free space without visiting some locations more than once, but the occurrence of such events can be minimized with efficient algorithms. The proposed multi-robot coverage strategy directs a number of simple robots to cover an unknown area in a systematic manner. This is based on footprint data left by the randomized path-planning robots previously operated on that area. The developed path-planning algorithm has been applied to a simulated environment and robots to verify its effectiveness and performance in such an application.


Sign in / Sign up

Export Citation Format

Share Document