scholarly journals Frequent alternate muscle activity of plantar flexor synergists and muscle endurance during low-level static contractions as a function of ankle position

2011 ◽  
Vol 61 (5) ◽  
pp. 411-419 ◽  
Author(s):  
Hiroyuki Tamaki ◽  
Hikari Kirimoto ◽  
Kengo Yotani ◽  
Hiroaki Takekura
2002 ◽  
Vol 93 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min ( experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC ( experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels ≤5.0% of MVC.


2006 ◽  
Vol 101 (3) ◽  
pp. 715-720 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara

Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [≤5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 ± 2.0 times/h) and RF-VM (7.0 ± 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 ± 0.7 times/h). MVC force after the sustained contraction decreased by 14% ( P < 0.01) from 573.6 ± 145.2 N to 483.3 ± 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs ( P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.


2014 ◽  
Vol 41 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Y. Kumazaki ◽  
M. Naito ◽  
S. Kawakami ◽  
A. Hirata ◽  
K. Oki ◽  
...  

Author(s):  
Mônica da Consolação Canuto Salgueiro ◽  
Carolina Carvalho Bortoletto ◽  
Anna Carolina RattoTempestini Horliana ◽  
Ana Carolina Costa Mota ◽  
Lara Jansiski Motta ◽  
...  

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 920-921
Author(s):  
Hiroshi Akima ◽  
Akira Saito ◽  
Kohei Watanabe ◽  
Motoki Kouzaki

2003 ◽  
Vol 95 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Masanobu Tachi ◽  
Hiroaki Kanehisa ◽  
...  

The relation between local circulation and alternate muscle activity among knee extensor synergists was determined during low-level sustained knee extension at 2.5% of maximal voluntary contraction for 60 min in seven subjects. Blood volume of rectus femoris (RF) and vastus lateralis (VL) was assessed by using near-infrared spectroscopy. Surface electromyogram (EMG) was recorded from RF, VL, and vastus medialis (VM). Alternate muscle activity was observed between RF and either VL or VM. Cross-correlation analysis was used to investigate the relation between blood volume and integrated EMG (iEMG) sequences throughout the task. One negative peak in the cross-correlation function was seen between the iEMG and blood volume with time lag of 30–60 s, indicating that muscle activity increases (or decreases) with the decrease (or increase) in local circulation with the corresponding time lag. Two cases in the emergence of alternate muscle activities, i.e., an increase in the EMG of RF accompanied by a decline of EMG in VL ( case I) and vice versa ( case II) were further analyzed. The time lag between iEMG and blood volume was longer in case I than that in case II. These results were statistically significant in the RF but not in the VL. It is concluded that even during low-level sustained contraction, local circulation is modulated by the alternate muscle activity of knee extensor synergists, and a negative correlation between the muscle activity and blood volume sequences was found in only RF but not in VL.


2006 ◽  
Vol 174 (3) ◽  
pp. 566-574 ◽  
Author(s):  
Tetsurou Torisu ◽  
Kelun Wang ◽  
Peter Svensson ◽  
Antoon De Laat ◽  
Hiroyuki Fujii ◽  
...  

1992 ◽  
Vol 67 (1) ◽  
pp. 75-83 ◽  
Author(s):  
F. A. Ottenhoff ◽  
A. van der Bilt ◽  
H. W. van der Glas ◽  
F. Bosman

1. During chewing, little muscle activity is required to make open-close movements with the mandible, and much additional muscle activity (AMA) of the closing muscles is needed to overcome the resistance of food. The neuromuscular control of the AMA was investigated. 2. Subjects made rhythmic open-close movements at their natural chewing frequency controlled by a metronome. Food resistance was simulated by an external force, acting on the jaw in a downward direction during part of the closing movement. Sequences of cycles with a force were unexpectedly alternated with sequences of cycles without a force. Jaw movement, and surface electromyograph (EMG) of the masseter, temporalis, and digastric muscles on both sides were recorded during cycles before and after the transition from force to no force (Disappear experiment) and vice versa (Appear experiment). 3. The movement trajectory of the second and following cycles after the transition from force to no force or vice versa were similar. Thus adaptation to the changed circumstances occurred in both types of experiments within two open-close cycles. 4. In the first cycle with force in the Appear experiments, the AMA started, on average, 129 ms after the onset of the force. In all other cycles with force, the AMA started, on average, 70 ms before the onset of the force at a low level and steeply increased 23 ms after the onset of the force. 5. In the first cycle without force in the Disappear experiments, the AMA started, on average, 69 ms before the moment at which the force would have started. However, the large contribution to the AMA had disappeared.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 108 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of concentric contractions and passive stretching on musculotendinous stiffness and muscle activity were studied in 18 healthy human volunteers. Passive and concentric plantar flexor joint moment data were recorded on an isokinetic dynamometer with simultaneous electromyogram (EMG) monitoring of the triceps surae, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction. The subjects then performed six 8-s ramped maximal voluntary concentric contractions before repeating both the passive and concentric trials. Concentric moment was significantly reduced (6.6%; P < 0.01), which was accompanied by, and correlated with ( r = 0.60–0.94; P < 0.05), significant reductions in peak triceps surae EMG amplitude (10.2%; P < 0.01). Achilles tendon stiffness was significantly reduced (11.7%; P < 0.01), but no change in gastrocnemius medialis muscle operating length was detected. The subjects then performed three 60-s static plantar flexor stretches before being retested 2 and 30 min poststretch. A further reduction in concentric joint moment (5.8%; P < 0.01) was detected poststretch at 90% of range of motion, with no decrease in muscle activity or Achilles tendon stiffness, but a significant increase in muscle operating length and decrease in tendon length was apparent at this range of motion ( P < 0.05). Thirty minutes after stretching, muscle activity significantly recovered to pre-maximal voluntary concentric contractions levels, whereas concentric moment and Achilles tendon stiffness remained depressed. These data show that the performance of maximal concentric contractions can substantially reduce neuromuscular activity and muscle force, but this does not prevent a further stretch-induced loss in active plantar flexor joint moment. Importantly, the different temporal changes in EMG and concentric joint moment indicate that a muscle-based mechanism was likely responsible for the force losses poststretch.


Sign in / Sign up

Export Citation Format

Share Document