Dynamical Model of Epidemic Along with Time Delay; Holling Type II Incidence Rate and Monod–Haldane Type Treatment Rate

2018 ◽  
Vol 27 (1-3) ◽  
pp. 299-312 ◽  
Author(s):  
Abhishek Kumar ◽  
Nilam
Author(s):  
Abhishek Kumar ◽  
Nilam

Abstract In this article, we propose and analyze a time-delayed susceptible–infected–recovered (SIR) mathematical model with nonlinear incidence rate and nonlinear treatment rate for the control of infectious diseases and epidemics. The incidence rate of infection is considered as Crowley–Martin functional type and the treatment rate is considered as Holling functional type II. The stability of the model is investigated for the disease-free equilibrium (DFE) and endemic equilibrium (EE) points. From the mathematical analysis of the model, we prove that the model is locally asymptotically stable for DFE when the basic reproduction number {R_0} is less than unity ({R_0} \lt 1) and unstable when {R_0} is greater than unity ({R_0} \gt 1) for time lag \tau \ge 0. The stability behavior of the model for DFE at {R_0} = 1 is investigated using Castillo-Chavez and Song theorem, which shows that the model exhibits forward bifurcation at {R_0} = 1. We investigate the stability of the EE for time lag \tau \ge 0. We also discussed the Hopf bifurcation of EE numerically. Global stability of the model equilibria is also discussed. Furthermore, the model has been simulated numerically to exemplify analytical studies.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850055 ◽  
Author(s):  
Abhishek Kumar ◽  
Nilam

In this paper, we present a mathematical study of a deterministic model for the transmission and control of epidemics. The incidence rate of susceptible being infected is very crucial in the spread of disease. The delay in the incidence rate is proved fatal. In the present study, we propose an SIR mathematical model with the delay in the infected population. We are taking nonlinear incidence rate for epidemics along with Holling type II treatment rate for understanding the dynamics of the epidemics. Model stability has been done by the basic reproduction number [Formula: see text]. The model is locally asymptotically stable for disease-free equilibrium [Formula: see text] when the basic reproduction number [Formula: see text] is less than one ([Formula: see text]). We investigated the stability of the model for disease-free equilibrium at [Formula: see text] equals to one using center manifold theory. We also investigated the stability for endemic equilibrium [Formula: see text] at [Formula: see text]. Further, numerical simulations are presented to exemplify the analytical studies.


2015 ◽  
Vol 61 (6) ◽  
pp. 15S-16S
Author(s):  
Yoshihiko Kurimoto ◽  
Ryushi Maruyama ◽  
Naritomo Nishioka ◽  
Kousuke Ujihira ◽  
Yutaka Iba ◽  
...  

2009 ◽  
Vol 70 (4) ◽  
pp. 1178-1200 ◽  
Author(s):  
Jing Xia ◽  
Zhihua Liu ◽  
Rong Yuan ◽  
Shigui Ruan

2009 ◽  
Vol 02 (02) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN JIA ◽  
HUI CAO

In this paper, we introduce and study Holling type II functional response predator–prey system with digest delay and impulsive harvesting on the prey, which contains with periodically pulsed on the prey and time delay on the predator. We investigate the existence and global attractivity of the predator-extinction periodic solutions of the system. By using the theory on delay functional and impulsive differential equation, we obtain the sufficient condition with time delay and impulsive perturbations for the permanence of the system.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Jin-Zhu Zhang ◽  
Zhen Jin ◽  
Quan-Xing Liu ◽  
Zhi-Yu Zhang

An SIR epidemic model with incubation time and saturated incidence rate is formulated, where the susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form with the susceptible. The threshold valueℜ0determining whether the disease dies out is found. The results obtained show that the global dynamics are completely determined by the values of the threshold valueℜ0and time delay (i.e., incubation time length). Ifℜ0is less than one, the disease-free equilibrium is globally asymptotically stable and the disease always dies out, while if it exceeds one there will be an endemic. By using the time delay as a bifurcation parameter, the local stability for the endemic equilibrium is investigated, and the conditions with respect to the system to be absolutely stable and conditionally stable are derived. Numerical results demonstrate that the system with time delay exhibits rich complex dynamics, such as quasiperiodic and chaotic patterns.


2009 ◽  
Vol 02 (02) ◽  
pp. 139-149 ◽  
Author(s):  
LINGSHU WANG ◽  
RUI XU ◽  
GUANGHUI FENG

A predator–prey model with time delay and Holling type-II functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the local stability of the system is investigated and Hopf bifurcations are established. The formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document