Oscillation of First Order Neutral Differential Equations with Delay

Author(s):  
Yutaka Shoukaku
Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 454 ◽  
Author(s):  
Osama Moaaz ◽  
Shigeru Furuichi ◽  
Ali Muhib

In this work, we present a new technique for the oscillatory properties of solutions of higher-order differential equations. We set new sufficient criteria for oscillation via comparison with higher-order differential inequalities. Moreover, we use the comparison with first-order differential equations. Finally, we provide an example to illustrate the importance of the results.


1997 ◽  
Vol 206 (1) ◽  
pp. 254-269 ◽  
Author(s):  
Alexander Domoshnitsky ◽  
Michael Drakhlin

2004 ◽  
Vol 1 (2) ◽  
pp. 347-349 ◽  
Author(s):  
Baghdad Science Journal

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.


2007 ◽  
Vol 4 (3) ◽  
pp. 485-490
Author(s):  
Baghdad Science Journal

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Božena Dorociaková ◽  
Anna Najmanová ◽  
Rudolf Olach

This paper contains some sufficient conditions for the existence of positive solutions which are bounded below and above by positive functions for the first-order nonlinear neutral differential equations. These equations can also support the existence of positive solutions approaching zero at infinity


Sign in / Sign up

Export Citation Format

Share Document