Differential Effect of Fruit Availability on Avian Frugivore Guilds in a Moist Deciduous Forest of India

2014 ◽  
Vol 68 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Soumik Chatterjee ◽  
Parthiba Basu
2011 ◽  
Vol 28 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Daphawan Khamcha ◽  
Tommaso Savini ◽  
Warren Y. Brockleman ◽  
Vijak Chimchome ◽  
George A. Gale

Abstract:Bulbul species (family Pycnonotidae) are important seed dispersers in Asian forests, but almost nothing is known of their movement patterns inside intact forest, which are likely to impact forest dynamics. We examined the movement patterns of the forest-dwelling puff-throated bulbul (Alophoixus pallidus) in relation to fruit productivity and distribution of fruiting trees/lianas in an evergreen forest in north-eastern Thailand. Movement patterns of 10 groups were precisely mapped by following colour-ringed individuals in each group 4 h mo−1 for 1 y. We evaluated fruit productivity and dispersion of fruiting trees/lianas based on monthly phenologies. There were clear seasonal fluctuations in fruit availability, which appeared to affect movement patterns, particularly distance moved between fruiting trees, time spent feeding and food selection. When fruit availability was low, bulbuls spent more time on average at a given food plant and moved longer distances between fruiting plants than compared with periods of higher fruit availability (low availability: 58 s, 83.2 m; high availability: 10 s, 43.4 m). This study points to the importance of seasonal availability of fruit resources on frugivore movement patterns. Seasonal dynamics of movement may be useful for understanding interactions between fruiting trees and their dispersers, and forest tree recruitment patterns.


Author(s):  
Sylvie Willems ◽  
Jonathan Dedonder ◽  
Martial Van der Linden

In line with Whittlesea and Price (2001) , we investigated whether the memory effect measured with an implicit memory paradigm (mere exposure effect) and an explicit recognition task depended on perceptual processing strategies, regardless of whether the task required intentional retrieval. We found that manipulation intended to prompt functional implicit-explicit dissociation no longer had a differential effect when we induced similar perceptual strategies in both tasks. Indeed, the results showed that prompting a nonanalytic strategy ensured performance above chance on both tasks. Conversely, inducing an analytic strategy drastically decreased both explicit and implicit performance. Furthermore, we noted that the nonanalytic strategy involved less extensive gaze scanning than the analytic strategy and that memory effects under this processing strategy were largely independent of gaze movement.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1707-P
Author(s):  
XI CHEN ◽  
XIANLIN HAN ◽  
JONATHAN TREJO ◽  
EMINA CASE ◽  
RALPH A. DEFRONZO ◽  
...  
Keyword(s):  

Diabetes ◽  
1992 ◽  
Vol 41 (3) ◽  
pp. 261-266 ◽  
Author(s):  
T. A. Mori ◽  
R. Vandongen ◽  
A. J. Douglas ◽  
R. K. McCulloch ◽  
V. Burke

Sign in / Sign up

Export Citation Format

Share Document