scholarly journals Correction to: Noise Characterization of InAs Based Composite Channel DG -MOSHEMT with Different Gate Dielectrics

Silicon ◽  
2021 ◽  
Author(s):  
G. Sujatha ◽  
N. Mohankumar ◽  
R. Poornachandran ◽  
R. Saravana Kumar ◽  
Girish Shankar Mishra ◽  
...  
Silicon ◽  
2021 ◽  
Author(s):  
G. Sujatha ◽  
N. Mohankumar ◽  
R. Poornachandran ◽  
R. Saravana Kumar ◽  
Girish Shankar Mishra ◽  
...  

2012 ◽  
Vol 522 ◽  
pp. 267-273 ◽  
Author(s):  
S. Mallik ◽  
C. Mukherjee ◽  
C. Mahata ◽  
M.K. Hota ◽  
T. Das ◽  
...  

2004 ◽  
Author(s):  
Jean-Guy Tartarin ◽  
Geoffroy Soubercaze-Pun ◽  
Abdelali Rennane ◽  
Laurent Bary ◽  
Robert Plana ◽  
...  

2015 ◽  
Vol 14 (5-6) ◽  
pp. 729-766 ◽  
Author(s):  
Franck Bertagnolio ◽  
Helge Aa. Madsen ◽  
Christian Bak ◽  
Niels Troldborg ◽  
Andreas Fischer

Measurement ◽  
2013 ◽  
Vol 46 (10) ◽  
pp. 3887-3897 ◽  
Author(s):  
Lide Fang ◽  
Yujiao liang ◽  
Qinghua Lu ◽  
Xiaoting Li ◽  
Ran Liu ◽  
...  

1997 ◽  
Vol 144 (9) ◽  
pp. 3299-3304 ◽  
Author(s):  
T. K. Nguyen ◽  
L. M. Landsberger ◽  
S. Belkouch ◽  
C. Jean

1999 ◽  
Vol 567 ◽  
Author(s):  
M.C. Gilmer ◽  
T-Y Luo ◽  
H.R. Huff ◽  
M.D. Jackson ◽  
S. Kim ◽  
...  

ABSTRACTA design-of-experiments methodology was implemented to assess the commercial equipment viability to fabricate the high-K dielectrics Ta2O5, TiO2 and BST (70/30 and 50/50 compositions) for use as gate dielectrics. The high-K dielectrics were annealed in 100% or 10% O2 for different times and temperatures in conjunction with a previously prepared NH3 nitrided or 14N implanted silicon surface. Five metal electrode configurations—Ta, TaN, W, WN and TiN—were concurrently examined. Three additional silicon surface configurations were explored in conjunction with a more in-depth set of time and temperature anneals for Ta2O5. Electrical characterization of capacitors fabricated with the above high-K gate dielectrics, as well as SIMS and TEM analysis, indicate that the post high-K deposition annealing temperature was the most significant variable impacting the leakage current density, although there was minimal influence on the capacitance. Further studies are required, however, to clarify the physical mechanisms underlying the electrical data presented.


2007 ◽  
Vol 07 (03) ◽  
pp. L299-L312
Author(s):  
ALI ABOU-ELNOUR

Based on Boltzmann transport equation, the drift-diffusion, hydrodynamic, and Monte-Carlo physical simulators are accurately developed. For each simulator, the model equations are self-consistently solved with Poisson equation, and with Schrödinger equation when quantization effects take place, in one and two-dimensions to characterize the operation and optimize the structure of mm-wave devices. The effects of the device dimensions, biasing conditions, and operating frequencies on the accuracy of results obtained from the simulators are thoroughly investigated. Based on physical understanding of the models, the simulation results are analyzed to fully determine the limits at which a certain device simulator can be accurately and efficiently used to characterize the noise behavior of mm-wave devices.


Sign in / Sign up

Export Citation Format

Share Document