Electrical Characterization of Oxynitrided Gate Dielectrics under Constant‐Current Fowler‐Nordheim Stress

1997 ◽  
Vol 144 (9) ◽  
pp. 3299-3304 ◽  
Author(s):  
T. K. Nguyen ◽  
L. M. Landsberger ◽  
S. Belkouch ◽  
C. Jean
1996 ◽  
Vol 74 (S1) ◽  
pp. 74-78 ◽  
Author(s):  
T. K. Nguyen ◽  
L. M. Landsberger ◽  
V. Logiudice ◽  
C. Jean

In the ongoing quest for thinner and more reliable gate dielectrics for microelectronics, fluorination of gate oxide structures has emerged as a leading technique. In this work, the fluorine is implanted into the polysilicon gate before the poly etch. After the subsequent poly etch and anneal, the samples are not sent through the remainder of the process, but are subjected to electrical reliability stressing by two methods: constant-current Fowler–Nordheim tunnelling stress, and constant-voltage stress (J–t analysis). Two different fluorination cases (doses and implant energies) are studied, along with unimplanted controls. In the fluorinated cases, improvement vs. controls is found in device reliability indicators: mid-gap Dit, Qf, and ΔVth. J–t analysis corroborates the improvement, and the combination of techniques is found to offer a more, comprehensive view of complex variations in fluorinated oxide properties.


1999 ◽  
Vol 567 ◽  
Author(s):  
M.C. Gilmer ◽  
T-Y Luo ◽  
H.R. Huff ◽  
M.D. Jackson ◽  
S. Kim ◽  
...  

ABSTRACTA design-of-experiments methodology was implemented to assess the commercial equipment viability to fabricate the high-K dielectrics Ta2O5, TiO2 and BST (70/30 and 50/50 compositions) for use as gate dielectrics. The high-K dielectrics were annealed in 100% or 10% O2 for different times and temperatures in conjunction with a previously prepared NH3 nitrided or 14N implanted silicon surface. Five metal electrode configurations—Ta, TaN, W, WN and TiN—were concurrently examined. Three additional silicon surface configurations were explored in conjunction with a more in-depth set of time and temperature anneals for Ta2O5. Electrical characterization of capacitors fabricated with the above high-K gate dielectrics, as well as SIMS and TEM analysis, indicate that the post high-K deposition annealing temperature was the most significant variable impacting the leakage current density, although there was minimal influence on the capacitance. Further studies are required, however, to clarify the physical mechanisms underlying the electrical data presented.


1998 ◽  
Vol 525 ◽  
Author(s):  
A. Srivastava ◽  
H. H. Heinisch ◽  
E. Vogel ◽  
C. Parker ◽  
C. M. Osburn ◽  
...  

ABSTRACTThe quality and composition of ultra-thin 2.0 nm gate dielectrics advocated for the 0.1 μm technology regime is expected to significantly impact gate tunneling currents, P+-gate dopant depletion effects and boron penetration into the substrate in PMOSFETs. This paper presents a comparative assessment of alternative grown and deposited gate dielectrics in sub-micron fabricated devices. High quality rapid-thermal CVD oxides and oxynitrides are examined as alternatives to conventional furnace grown gate oxides. An alternative gate process using in-situ boron doped and RTCVD deposited poly-Si is explored. PMOSFETs with Leff down to 0.06 μm were fabricated using a 0.1 μm technology. Electrical characterization of fabricated devices revealed excellent control of gate-boron depletion with the in-situ gate deposition process in all devices. Boron penetration of 2.0 nm gate oxides was effectively controlled by the use of a lower temperature RTA process. The direct tunneling leakage, although significant at these thicknesses, was less than 1 mA/cm2 at Vd = −1.2 V for all dielectrics. MOSFETs with comparable drive currents and excellent junction and off-state leakages were obtained with each dielectric.


Sign in / Sign up

Export Citation Format

Share Document